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Abstract

In this paper we survey the various notions of anonymity and symmetry for finite strategic-form games
that are present in the literature, and discuss notions of fairness; show that game bijections and game
isomorphisms form groupoids; introduce matchings as a convenient characterisation of strategy triviality;
and outline how to construct and partially order parameterised (symmetric) games with numerous exam-
ples that range all combinations of surveyed symmetry notions, which when combined with other results
in this paper gives the precise relationship between the various symmetry notions.
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1 Introduction

The notion of a game being fair may be made more precise with the concept of symmetry. Broadly speaking
we will consider a game fair when the players are indifferent between which position they play, however
∗Email: contact@n-ham.com
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there are several distinct notions of symmetry that are possible which lead to variations in structure and
fairness. For example, the players may or may not care about the arrangement of their opponents.

This paper surveys the numerous notions of symmetry for finite strategic-form games that are present in
the literature, whilst also filling various holes and opening several further directions of research in the area.
This is important to our understanding of the theory of symmetric games and fairness, which is fundamental
when it comes to the theory of games, artificial intelligence, biology, computer science, economic theory,
legal systems, logic, philosophy, political science, along with social choice and voting theory to name just
a few examples. A few specific examples where a better understanding of symmetry and fairness is ideal
includes but is definitely not limited by Arrow’s impossibility theorem [2,3], financial contagion [7], human
misery [22], human trafficking [1] and incentive theory [20, 21]. Note that this paper does not survey the
literature on notions of symmetry, though the reader may find it a useful reference if undertaking such an
endeavour.

Symmetry and fairness in the context of games was first explored by von Neumann and Morgenstern [34],
outlining what we will later refer to as our label-dependent framework in which player permutations act
on strategy profiles, consequently requiring all players have the same strategy labels. Soon after Nash [24]
famously showed that symmetric games have at least one symmetric mixed strategy Nash equilibrium, while
more recently Cheng et al. [5] showed that fully symmetric 2-strategy games have at least one pure strategy
Nash equilibrium. Notions of symmetry and equivalence also appear in [16].

Notably the term fair has not really been used in the context of non-zero-sum strategic-form games.
However the term fair did appear as early as the 1950s in the context of zero-sum games, which are a
subclass of strategic-form games, for example see [10, 32, 34]. There will be a discussion in Subsection 5.3
defending the author’s use of the term fair in the context of symmetric strategic-form games, though note it
is an incredibly complicated and intricate topic, with few to no objectively unambiguously correct answers,
but may hopefully be helpful with regards to giving people an actual choice in life without threats and other
horrible ways of turning victims against each other, rather than rewarding the people who actually cause
those problems for society.

Under the theme of anonymity rather than fairness, Brandt et al. [4] examined label-dependent notions
such as where players are indifferent between who plays which strategy, and where players do not distinguish
between their opponents.

A number of people have examined notions of symmetry which may not be captured inside our label-
dependent framework, see for example Nash [24], Shapley [27], Peleg et al. [26], Sudhölter et al. [30] and
Stein [28]. In order to discuss and analyse such notions we will need to make a detour to examine morphisms
between games, the complexity of which has been investigated by Gabarró et al. [9]. Inside what will later
be referred to as our label-independent framework game automorphisms act on strategy profiles, which also
allows players to have distinct strategy labels.

We begin in Section 2 by reviewing numerous mathematical concepts that will play an important role
throughout our analysis. In Section 3 we survey various label-dependent notions of anonymity and fairness.

In Section 4 we review game morphisms while showing that game bijections and game isomorphisms form
groupoids, which appears to be missing from relevant literature, and introduce matchings as a convenient
characterisation of strategy triviality.

Finally, in Section 5 we survey various label-independent notions of fairness, discuss how to classify a
given game, and outline how to construct and partially order parameterised symmetric games with numerous
examples that range over various classes.

2 Background

Let N = {1, . . . , n} where n ≥ 2 and let {Ai : i ∈ N} be a collection of non-empty sets. To simplify notation:

(i) We denote the Cartesian product of {Ai : i ∈ N}, ie. ×i∈NAi, as A;

(ii) For each i ∈ N we denote ×j∈N−{i}Aj as A−i;

(iii) For each s ∈ ×i∈NAi and i ∈ N we denote the element of Ai used in s, which is position i of s, as si;

(iv) For each i ∈ N and s = (s1, . . . , si−1, si, si+1, . . . , sn) ∈ A we denote (s1, . . . , si−1, si+1, . . . , sn) ∈ A−i
as s−i;
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(v) For each si ∈ Ai and s−i = (s1, . . . , si−1, si+1, . . . , sn) ∈ A−i we denote (s1, . . . , si−1, si, si+1, . . . , sn) ∈
×i∈NAi as (si, s−i) or s, whichever is contextually convenient;

(vi) For each k ∈ N and distinct i1, . . . , ik ∈ N we denote N − {i1, . . . , ik} as N−i1−...−ik , for example
N−1−...−k = {k + 1, . . . , n};

(vii) For each k ∈ N − {n} and distinct i1, . . . , ik ∈ N we denote
(
(A−i1)−i2 . . .

)
−ik

= A−i1−i2...−ik
=

×i∈N−{i1,...,ik}Ai as A−i1−...−ik ; and

(viii) For each s ∈ A, k ∈ N − {n} and distinct i1, . . . , ik ∈ N we denote
(
(s−i1)−i2 . . .

)
−ik

= s−i1−i2...−ik
∈

A−i1−...−ik = ×i∈N−{i1,...,ik}Ai as s−i1−...−ik ;

(ix) For each k ∈ N − {n}, distinct i1, . . . , ik, j ∈ N and s−i1−...−ik ∈ A−i1−...−ik we denote the element of
Aj used in s−i1−...−ik as (s−i1−...−ik)j , note if j > min {il : l ∈ {1, . . . , k}} then this will not be position
j of the (n− k)-tuple s−i1−...−ik .

A relation on {Ai : i ∈ N} is a subset R of their Cartesian product ×i∈NAi. Let i ∈ N , we say that
R is i-total when for each si ∈ Ai there exists s−i ∈ A−i such that (si, s−i) ∈ R, and i-unique when
(si, s−i), (si, s′−i) ∈ R implies s−i = s′−i.

Given sets X and Y , a function from X to Y is a functional left-total binary relation f ⊆ X × Y . We
denote the set of functions from X to Y as Y X . Let f ∈ Y X :

(i) Since f is functional, for each x ∈ X we may denote by f(x) the unique element in Y such that
(x, f(x)) ∈ f ;

(ii) The image of f is the set {f(x) : x ∈ X}, which we denote as f(X); and

(iii) If Y = X then the function that maps each element of X to itself acts as an identity under composition,
it is typically referred to as the identity function and denoted as idX .

A function f ∈ Y X is referred to as:

(i) injective, or as an injection, when for each x, x′ ∈ X, f(x) = f(x′) if and only if x = x′;

(ii) surjective, or as a surjection, when f(X) = Y ; and

(iii) bijective, or as a bijection, when it is both injective and surjective.

Note that the bijections from a set to itself form a group under composition.
A function f ∈ RR is referred to as:

(i) a strictly increasing function when for each x, x′ ∈ R, x < x′ if and only if f(x) < f(x′); and

(ii) a positive linear transformation when there exists α ∈ R+ and β ∈ R such that f(x) = αx+ b for all
x ∈ X.

Note that the strictly increasing functions are a subgroup of the bijections from R to R, and that
the positive linear transformations are a subgroup of the strictly increasing functions. For proofs see [13,
Propositions 2.2.4 and 2.2.6].

A strategic-form game, or just game when contextually unambiguous, consists of a set N = {1, . . . , n}
of n ≥ 2 players, or player names, and for each player i ∈ N , a non-empty set Ai of strategies and a utility
function ui : A → R, where A denotes the set of strategy profiles ×i∈NAi. We denote such a game as the
triple (N,A, u), where u = (ui)i∈N . If there exists m ∈ Z+ such that |Ai| = m for all i ∈ N then (N,A, u)
is called an m-strategy game. A game (N,A, u) is finite when both N is finite and Ai is finite for all i ∈ N .

In this paper we will only concern ourselves with finite games, consequently all player sets and pure
strategy sets are implicitly finite. It is noted in Mas-Collel, Whinston and Green [23, Proposition 3.C.1]
that for a set X any rational preference relation may be described by some utility function, it is also worth
checking Sections 3.B and 3.C, especially the definition of a rational preference relation (Definition 3.B.1).
This would be a useful place to begin when trying to explore notions of symmetry and fairness for non-finite
games (so a [possibly] non-finite number of players and/or [possibly] non-finite strategy sets, with at least
one non-finite set involved).
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Note that the strategy profiles, and consequently also the utility functions, of a game have an implicit
ordering of the players. We refer to the place of each player in this order as their position. For games when
the player names are {1, . . . , n}, unless otherwise specified, the names and positions coincide.

A game may be displayed pictorially as a list of matrices. We list the strategies from players n − 1
and n along the rows and columns respectively (or from the players in positions n − 1 and n where the
player names are not {1, . . . , n}), and for games with more than two players have a separate matrix for each
strategy combination of the remaining players {1, . . . , n− 2}. Each strategy profile s ∈ A corresponds to a
unique cell in one of the matrices where the payoffs are written in the form

(
ui(s)

)
i∈N . For an example, see

Example 2.1.
Example 2.1: 3-player 2-strategy game.

a b
a 1, 1, 1 2, 2, 3
b 2, 3, 2 4, 5, 5

(a, , )

a b
a 3, 2, 2 5, 4, 5
b 5, 5, 4 6, 6, 6

(b, , )

We find the payoff to player 3 for the strategy profile (b, b, a) ∈ A as follows: reading the strategy profile
from left to right, player 1 has chosen the second matrix, player 2 has chosen the second row and player 3
has chosen the first column, the third value of which is the payoff to player 3. Hence u3(b, b, a) = 4.

The reader should note that the usual convention in most of the game theory literature is to have players
1 and 2 along the rows and columns respectively, and for games with more than two players have a separate
matrix for each strategy combination of the remaining players {3, . . . , n}. The author considers the usual
convention objectively inferior to the convention used in this paper, primarily when finding the payoffs for
a given strategy profile.

The normal and convenient convention is to read an n-tuple left-to-right, when reading a strategy profile
left-to-right to find the payoffs for players:

(i) using the usual convention first one finds the correct row and column in the first matrix, then one
finds the correct matrix while trying to recall what the correct row and column are, which is incredibly
tedious, frustrating and error-prone; whereas

(ii) using the convention in this paper one first finds the correct matrix, then one finds the correct row and
column, which also has one indexing the payoff matrices using the normal convention for matrices.

A possible solution with the usual convention when finding the payoffs for a given strategy profile is
to read strategy profiles left-to-right from player 3 through to player n, and then players 1 and 2. The
author still finds this less efficient and more tedious, frustrating and error-prone than simply changing to
the convention used in this paper.

Given a set X, we denote the set of probability distributions over X as ∆(X), ie. ∆(X) = {σ ∈ [0, 1]X :
Σx∈Xσ(x) = 1}. Need to clean this up.

Given a game Γ = (N,A, u), for each player i ∈ N , the mixed strategy set for player i is the set of
probability distributions over Ai, ie. ∆(Ai) = {σi ∈ [0, 1]Ai : Σsi∈Aiσi(si) = 1}. The set of mixed strategy
profiles is the Cartesian product of the players’ mixed strategy sets, ie. ×i∈N∆(Ai), note that this is not the
same as the probability distributions over A, ie. ×i∈N∆(Ai) 6= ∆(A). To simplify notation we shall denote
×i∈N∆(Ai) as ∇(A). Given our notation from earlier, for each i ∈ N we have ∇(A)−i = ×j∈N−{i}∆(Aj).

Define f : ∇(A) → ∆(A) where for each σ = (σ1, . . . , σn) ∈ ∇(A), we let f(σ)(s) = f(σ1, . . . , σn)(s) =∏
i∈N σi(si) for all s ∈ A.

Note that for each k ∈ N − {n}, distinct i1, . . . , ik ∈ N , σ ∈ ∇(A) and s ∈ A:

f(σ−i1−...−ik−1)(s−i1−...−ik−1) =
∏

j∈N−i1−...−ik−1

(σ−i1−...−ik−1)
j
((s−i1−...−ik−1)

j
)

= σik(sik)
∏

j∈N−i1−...−ik

(σ−i1−...−ik)j((s−i1−...−ik)j)

= σik(sik)f(σ−i1−...−ik)(s−i1−...−ik).

Proposition 2.2: The function f defined above satisfies:
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(i) For each σ = (σ1, . . . , σn) ∈ ∇(A), f(σ) = f(σ1, . . . , σn) ∈ ∆(A) (ie. f is well-defined);

(ii) For each σ, σ′ ∈ ∇(A), f(σ) = f(σ′) if and only if σ = σ′ (ie. f is injective); and

(iii) f (∇(A)) ⊂ ∆(A) (ie. f is not surjective).

Proof. (i) First note that:

σi(si) ≥ 0 for all i ∈ N, si ∈ Ai
⇒ f(σ)(s) = f(σ1, . . . , σn)(s) =

∏
i∈N

σi(si) ≥ 0 for all s ∈ A.

Also we have:∑
s∈A

f(σ)(s) =
∑
s∈A

f(σ1, . . . , σn)(s) =
∑
s∈A

∏
i∈N

σi(si)

=
∑
s∈A

[σ1(s1)f(σ−1)(s−1)]

=
∑
s1∈A1

∑
s−1∈A−1

[σ1(s1)f(σ−1)(s−1)]

=
∑
s1∈A1

σ1(s1)

 ∑
s−1∈A−1

f(σ−1)(s−1)


=

 ∑
s1∈A1

σ1(s1)

 ∑
s−1∈A−1

f(σ−1)(s−1)


=

∑
s−1∈A−1

f(σ−1)(s−1)

=
∑

s−1∈A−1

[σ2((s−1)2)f(σ−1)(s−1)]

=
∑
s2∈A2

∑
s−1−2∈A−1−2

[σ2(s2)f(σ−1−2)(s−1−2)]

=

 ∑
s2∈A2

σ2(s2)

 ∑
s−1−2∈A−1−2

f(σ−1−2)(s−1−2)


=

∑
s−1−2∈A−1−2

f(σ−1−2)(s−1−2)

...
=

∑
s−1−...−(n−1)∈A−1−...−(n−1)

f(σ−1−...−(n−1))(s−1−...−(n−1))

=
∑

sn∈An
σn(sn) = 1.

(ii) For each σ, σ′ ∈ ∇(A) and i ∈ N , recalling that σi(si) = 1 −
∑
s′i∈Ai−{si}

σi(s′i) and σ′i(si) = 1 −∑
s′i∈Ai−{si}

σ′i(s′i), we have:

f(σ) = f(σ′)
⇒ f(σ)(s) = f(σ′)(s) for all s ∈ A
⇒
∏
i∈N

σi(si) =
∏
i∈N

σ′i(si) for all s ∈ A.

If we fix s1 ∈ A1 then for all s−1 ∈ A−1 we have:

⇒


σ1(s′1)f(σ−1)(s−1) = σ′1(s′1)f(σ′−1)(s−1) for all s′1 ∈ A1 − {s1}1−

∑
s′1∈A1−{s1}

σ1(s′1)

 f(σ−1)(s−1) =

1−
∑

s′1∈A1−{s1}
σ′1(s′1)

 f(σ′−1)(s−1)

5



⇒


∑

s′1∈A1−{s1}
σ1(s′1)f(σ−1)(s−1) =

∑
s′1∈A1−{s1}

σ′1(s′1)f(σ′−1)(s−1)∑
s′1∈A1−{s1}

σ1(s′1)f(σ−1)(s−1) = f(σ−1)(s−i)− f(σ′−1)(s−1) +
∑

s′1∈A1−{s1}
σ′1(s′1)f(σ′−1)(s−1)

⇒
∑

s′1∈A1−{s1}
σ′1(s′1)f(σ′−1)(s−1) = f(σ−1)(s−1)− f(σ′−1)(s−1) +

∑
s′1∈A1−{s1}

σ′1(s′1)f(σ′−1)(s−1)

⇒ f(σ−1)(s−1) = f(σ′−1)(s−1).

Repeating the steps taken so far for all players excluding i we get:

f(σ)(s) = f(σ′)(s) for all s ∈ A
⇒ f(σ−1)(s−1) = f(σ′−1)(s−1) for all s−1 ∈ A−1

...
⇒ f(σ−1−...−(i−1))(s−1−...−(i−1)) = f(σ′−1−...−(i−1))(s−1−...−(i−1))

for all s−1−...−(i−1) ∈ A−1−...−(i−1)

⇒ f(σ−1−...−(i−1)−(i+1))(s−1−...−(i−1)−(i+1)) = f(σ′−1−...−(i−1)−(i+1))(s−1−...−(i−1)−(i+1))
for all s−1−...−(i−1)−(i+1) ∈ A−1−...−(i−1)−(i+1)

...
⇒ f(σ−1−...−(i−1)−(i+1)−...−n)(s−1−...−(i−1)−(i+1)−...−n) = f(σ′−1−...−(i−1)−(i+1)−...−n)(s−1−...−(i−1)−(i+1)−...−n)

for all s−1−...−(i−1)−(i+1)−...−n ∈ A−1−...−(i−1)−(i+1)−...−n

⇒ σi(si) = σ′i(si) for all si ∈ Ai
⇒ σi = σ′i.

(iii) First let σ ∈ ∆(A). If we let s ∈ A and specify values σ(s′) ≥ 0 for all s′ ∈ A − {s} such that∑
s′∈A−{s} σ(s′) ≤ 1 then σ is uniquely determined, as σ(s) = 1 −

∑
s′∈A−{s} σ(s′). Further, if we let

σ′ ∈ ∆(A) where there exists s′ ∈ A− {s} such that σ′(s′) 6= σ(s′) then we trivially have that σ′ 6= σ.
Hence σ is uniquely determined if and only if we have have values specified for all s′ ∈ A−{s}, which
is −1 + |A| = −1 +

∏
i∈N |Ai| values. To complete the proof it suffices for us to show that fewer values

will uniquely determine an arbitrary σ ∈ ∇(A).
Let σ = (σ1, . . . , σn) ∈ ∇(A), s ∈ A and i ∈ N . For each j ∈ N pick s′j ∈ Aj − {sj}. Note that
σj(s′j) = 1−

∑
s′′j ∈Aj−{s

′
j}
σj(s′′j ). Now:

(i) for each s′′i ∈ Ai − {s′i}, suppose f(σ)(s′′i , s−i) is specified; and
(ii) for each j ∈ N−i and s′′j ∈ Aj , suppose f(σ)(s′′j , s−j) is specified.

This gives us
∑
i∈N (|Ai| − 1) = −n +

∑
i∈N |Ai| values specified. Since −n < −1 for all n ≥ 2

and
∑
i∈N |Ai| ≤

∏
i∈N |Ai| for all n and all |A1|, . . . , |An| ≥ 2, it follows that −n +

∑
i∈N |Ai| <

−1 +
∏
i∈N |Ai| for all n ≥ 2 and all |A1|, . . . , |An| ≥ 2.

For each j ∈ N−i and s′′j ∈ Aj , f(σ)(s′′j , s−j) = σj(s′′j )
∏
k∈N−j σk(sk) = σi(si)σj(s′′j )

∑
k∈N−i−j σk(sk)

with f(σ)(s′j , s−j) = σi(si)
(
1−

∑
s′′j ∈Aj−{s

′
j}
σj(s′′j )

)∑
k∈N−i−j σk(sk). Rearranging we get:

σi(si) =
f(σ)(s′′j , s−j)

σj(s′′j )
∏
k∈N−i−j σk(sk)

for all s′′j ∈ Aj ; and (1)

σi(si) =
f(σ)(s′j , s−j)(

1−
∑
s′′j ∈Aj−{s

′
j}
σj(s′′j )

)∏
k∈N−i−j σk(sk)

. (2)

For each s′′j ∈ Aj − {s′j}, if we set Equation (1) equal to itself for the sj and s′′j cases then rearrange
we get:

f(σ)(sj , s−j)
σj(sj)

∏
k∈N−i−j σk(sk)

=
f(σ)(s′′j , s−j)

σj(s′′j )
∏
k∈N−i−j σk(sk)
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⇒ σj(s′′j ) =
f(σ)(s′′j , s−j)
f(σ)(sj , s−j)

σj(sj). (3)

Subbing Equation (3) in to Equation (2) then setting equal to Equation (1) for the sj case we get:

f(σ)(s′j , s−j)1−
∑

s′′j ∈Aj−{s
′
j}

f(σ)(s′′j , s−j)
f(σ)(sj , s−j)

σj(sj)

 ∏
k∈N−i−j

σk(sk)

= f(σ)(sj , s−j)
σj(sj)

∏
k∈N−i−j

σk(sk)

⇒ f(σ)(s′j , s−j)σj(sj) = f(σ)(sj , s−j)−
∑

s′′j ∈Aj−{s
′
j}
f(σ)(s′′j , s−j)σj(sj)

⇒ σj(sj) = f(σ)(sj , s−j)∑
s′′j ∈Aj

f(σ)(s′′j , s−j)
= f(σ)(sj , s−j)∑

s′′′j ∈Aj

f(σ)(s′′′j , s−j)
. (4)

Subbing Equation (4) in to Equation (3), for each s′′j ∈ Aj − {s′j} we get:

σj(s′′j ) =
f(σ)(s′′j , s−j)
f(σ)(sj , s−j)

σj(sj) =
f(σ)(s′′j , s−j)
f(σ)(sj , s−j)

f(σ)(sj , s−j)∑
s′′′j ∈Aj

f(σ)(s′′′j , s−j)
=

f(σ)(s′′j , s−j)∑
s′′′j ∈Aj

f(σ)(s′′′j , s−j)
.

Which gives us:

σj(s′j) = 1−
∑

s′′j ∈Aj−{s
′
j}
σj(s′′j )

= 1−
∑

s′′j ∈Aj−{s
′
j}

f(σ)(s′′j , s−j)∑
s′′′j ∈Aj

f(σ)(s′′′j , s−j)

=

 ∑
s′′′j ∈Aj

f(σ)(s′′′j , s−j)

−
 ∑
s′′j ∈Aj−{s

′
j}
f(σ)(s′′j , s−j)


∑

s′′′j ∈Aj

f(σ)(s′′′j , s−j)

=
f(σ)(s′j , s−j)∑

s′′′j ∈Aj

f(σ)(s′′′j , s−j)
.

Finally, for each s′′i ∈ Ai − {s′i} we have:

σi(s′′i ) = f(σ)(s′′i , s−i)∏
j∈N−i

σj(sj)
; and

σi(s′i) = 1−
∑

s′′i ∈Ai−{s
′
i}
σi(s′′i ) = 1−

∑
s′′i ∈Ai−{s

′
i}
f(σ)(s′′i , s−i)∏

j∈N−i
σj(sj)

.

Hence with −n+
∑
i∈N |Ai| values already specified the rest of σ is uniquely determined. Consequently

∆(A)− f(∇(A)) is non-empty.

To simplify notation for the remainder of the paper, for each σ ∈ ∇(A) and s ∈ A we shall denote
f(σ)(s) as σ(s).
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Need to do expected utility. For each player i ∈ N , the domain for their utility function can be extended
linearly from A to ∇(A) with ui(σ) = Σs∈Aσ(s)ui(s) for all σ ∈ ∇(A).

What about ∇(A)−i = ×j∈N−{i}∆(Aj)? Do we have ∇(A)−i ⊂ ∆(A−i)? Also given i ∈ N and
σ ∈ ∇(A), we have σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) ∈ ∇(A)−i.

A pure strategy Nash equilibrium is a strategy profile s ∈ A where for each i ∈ N , ui(si, s−i) ≥ ui(s′i, s−i)
for all s′i ∈ Ai. For example, in Example 2.1 the profile (b, b, b) is a pure strategy Nash equilibrium.

For each player i ∈ N , the maximin value for player i is given by:

ui = max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

ui(σi, σ−i),

and the minimax value for player i is given by:

ui = min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

ui(σi, σ−i).

The maximin value for player i from an intuitive point of view is:

(i) the highest expected payoff player i can be sure to obtain when they do not know what strategies their
opponents will play; and

(ii) the lowest expected payoff player i’s opponents can force player i to obtain when they know what
strategy player i will play.

While the minimax value for player i from an intuitive point of view is:

(i) the lowest expected payoff player i’s opponents can force player i to obtain when they do not know
what strategy player i will play; and

(ii) the highest expected payoff player i can be sure to obtain when they know what strategies their
opponents will play.

It is obvious from both intuitive points of view for the maximin and minimax values that the maximin
values are less than or equal to the minimax values, ie. for each player i ∈ N :

ui = max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

ui(σi, σ−i) ≤ min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

ui(σi, σ−i) = ui.

A fairly standard proof of the above is as follows.
Proposition 2.3: Given a game Γ = (N,A, u), for each player i ∈ N :

ui = max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

ui(σi, σ−i) ≤ min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

ui(σi, σ−i) = ui.

Proof. Let σ∗i = arg max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

ui(σi, σ−i) and σ∗−i = arg min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

ui(σi, σ−i).

(i) ui = max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

ui(σi, σ−i) ≤ ui(σ∗i , σ−i) for all σ−i ∈ ∇(A)−i; and

(ii) ui(σi, σ∗−i) ≤ min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

ui(σi, σ−i) = ui for all σi ∈ ∆(Ai).

From which it follows that ui ≤ ui(σ∗i , σ∗−i) ≤ ui.

A game Γ = (N,A, u) is referred to as zero-sum if
∑
i∈N ui(s) = 0 for all s ∈ A. In a zero-sum game,

each player’s gain or loss is exactly matched by the combined losses or gains of their opponents.
Proposition 2.4: Given a 2-player zero-sum game ({1, 2}, A1 × A2, (u1, u2)), the maximin and minimax
values for each player are equal to minus the minimax and maximin values for the other player.
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Proof. The following is basically rephrased from what is on (I think from memory) Wikipedia.
This may be seen by noting that u1(s) = −u2(s), and u2(s) = −u1(s), for all s ∈ A. Hence:

(i) u1 = max
σ1∈∆(A1)

min
σ2∈∆(A2)

u1(σ1, σ2) = max
σ1∈∆(A1)

min
σ2∈∆(A2)

−u2(σ1, σ2)

= − min
σ1∈∆(A1)

max
σ2∈∆(A2)

u2(σ1, σ2) = −u2; and

(ii) u1 = min
σ1∈∆(A1)

max
σ2∈∆(A2)

u1(σ1, σ2) = min
σ1∈∆(A1)

max
σ2∈∆(A2)

−u2(σ1, σ2)

= − max
σ1∈∆(A1)

min
σ2∈∆(A2)

u2(σ1, σ2) = −u2.

Now show each player’s maximin value and minimax value are equal for 2-player zero-sum games.
Proposition 2.5: Given a 2-player zero-sum game Γ = ({1, 2}, A1×A2, (u1, u2)), the maximin and minimax
values for each player are equal. Ie. ui = ui for all i ∈ {1, 2}.

Proof. There is a number of proofs for this throughout the literature and on the internet, one shall be
added and cited it later.

Proposition 2.6: Given a zero-sum game (N,A, u), for each i ∈ N , ({i,−i} , Ai × A−i, u
∗
i × u∗−i) is a

2-player zero-sum game where u∗i = u and u∗−i = Σj∈N−{i}ui. Since what we would want for A∗−i is just A−i
we do not bother complicating our notation further, similarly with Ai.

Proof. Note that we have two players, i and −i, each with a finite number of strategies, and for each s ∈ Ai
and s−i ∈ A−i we have u∗i (s) = ui(s) and u∗−i(s) = Σj∈N−{i}ui(s), hence u∗i (s)+u∗−i(s) = u1(s)+ . . . un(s) =
0.

It will be of interest from the theory point of view to establish, in the context of (n-person) zero-sum
games, whether each player’s maximin and minimax values must be equal. An attempt at trying to establish
that they are equal is below,
Puzzle 2.7: Given a zero-sum game Γ = (N,A, u), are each player’s maximin value and minimax value
equal (it is difficult to work out what the actual puzzles even are here, proceed with caution!):

(i) under what conditions (possibly all/none) do we have u∗i = u∗−i and u∗i = u∗−i?;

(ii) under what conditions (possibly all/none) do we have ui = ui for all i ∈ N?; and

(iii) under what conditions (possibly all/none) do we have ui = u−i

Proof. If Γ has only two players then the result follows from Proposition 2.5, so suppose Γ has more than
two players.

Given a zero-sum game Γ = (N,A, u), for each player i ∈ N let Γ′ = ({i,−i}, Ai×A−i, (u∗i , u∗−i)) be the
2-player zero-sum game where u∗i = ui and u∗−i = Σj∈N−{i}uj , ie. u∗−i(s) = Σj∈N−{i}uj(s) for all s ∈ A.

For each i ∈ N , noting that it follows from Propositions 2.5 and 2.6 that u∗i = u∗i = −u∗i = −u∗i .
Hence puzzle (ii) is fine, ie. we do know that u∗i = u∗i = u∗−i = u∗−i.
It remains to show ui = u∗i and u∗i = ui? Ie. need to prove/show/establish whether:

⇒


ui = max

σi∈∆(Ai)
min

σ−i∈∇(A)−i
ui(σi, σ−i) = max

σi∈∆(Ai)
min

σ−i∈∆(A−i)
u∗i (σi, σ−i) = u∗i ; and

u∗i = min
σi∈∆(Ai)

max
σ−i∈∇(A)−i

ui(σi, σ−i) = min
σi∈∆(Ai)

max
σ−i∈∆(A−i)

u∗i (σi, σ−i) = ui.

We denote the subgroup relation as ≤, the group generated by a subset H of a group G as 〈H〉, the
group of permutations on a non-empty set X as SX , and the subset of transpositions on X as TX . The
reader is reminded that the permutations on X are equivalent to the bijections from X to itself, henceforth
we will refer to them interchangeably.

An action of a group G on a set N is a homomorphism α from G into the bijections from N to itself. For
each g ∈ G and i ∈ N we denote

(
α(g)

)
(i) as g(i). When G acts on the left or right of N the action is called a
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left or right action respectively. We note that left actions can be defined equivalently as antihomomorphisms
that act on the right, and dually for right actions.

An action is transitive if for each i, j ∈ N there exists g ∈ G such that g(i) = j, regular if for each
i, j ∈ N there exists precisely one g ∈ G such that g(i) = j, and n-transitive if for each π ∈ SN there exists
g ∈ G such that g(i) = π(i) for all i ∈ N . When an action of G can be inferred we simply refer to G as
being transitive, regular or n-transitive respectively.

The stabiliser of i ∈ N , which we denote as Gi, is the subgroup {g ∈ G : g(i) = i} of elements in G
that fix i. Similarly the stabiliser of N , which we denote as GN , is the normal subgroup {g ∈ G : g(i) =
i for all i ∈ N} = ∩i∈NGi of elements in G that fix each i ∈ N .

The orbit of i ∈ N is G(i) = {g(i) : g ∈ G}. The orbits of N , denoted as N/G, is the set {G(i) : i ∈ N}
which forms a partition of N .

By a groupoid we mean a category in which every morphism is invertible. For the sake of brevity, when
the objects of a groupoid can be inferred we refer to the morphisms as a groupoid.

3 Label-Dependent Notions of Symmetry

There are various ways to define a notion of symmetry, not all of which are distinct. In each case we need all
players to have the same number of strategies, consequently all games are implicitly m-strategy games. It is
often assumed when defining symmetric games that all players have the same strategy labels and any notion
of symmetry will treat the same labels as equivalent. We shall refer to these as label-dependent notions.

3.1 Permutations Acting On Strategy Profiles

There is some confusion over how to correctly define symmetric games, see [6, Definition 7], in order to
provide clarity we need to review two ways that player permutations may act on strategy profiles.

Given a player permutation π ∈ SN and strategy profile s ∈ A, two possible action choices are (si)i∈N 7→
(sπ(i))i∈N and (si)i∈N 7→ (sπ−1(i))i∈N . We denote (sπ−1(i))i∈N as π(s), for example given (s1, . . . , sn) ∈ A,
π(s1, . . . , sn) = (sπ−1(1), . . . , sπ−1(n)).

The author notes that our somewhat unintuitive notation has been chosen so that it matches with
composition and inversion in an ideal manner. That is so for each s ∈ A, (τ ◦ π)(s) = τ

(
π(s)

)
and

(τ ◦ π)−1 = π−1 ◦ τ−1.
Lemma 3.1: s 7→ π(s) is a left action of SN on A.

Proof. The identity permutation trivially acts as an identity so we need only establish associativity. For
each π, τ ∈ SN , s ∈ A and i ∈ N ,

(
(τ ◦ π)(s)

)
i

= s(τ◦π)−1(i) = sπ−1(τ−1(i)) =
(
π(s)

)
τ−1(i) =

(
τ
(
π(s)

))
i
.

For each s, s′ ∈ A. We have π(s) = π(s′) if and only if sπ−1(i) = s′π−1(i) for all i ∈ N and for each
s ∈ A, π−1(s) ∈ A and π(π−1(s)) = (π ◦ π−1)(s) = s. Hence for each s ∈ A, s 7→ π(s) is both injective and
surjective, ie. s 7→ π(s) ∈ Bij(A,A).

It might be worth explaining which bijections of A we have using {s 7→ π(s) : π ∈ SN}? Ie. Bij(A)−{s 7→
π(s) : π ∈ SN}, though is trivially just the bijections where there’s consistency with mapping strategies
from one player to the same possibly other player. Same for {s 7→ g(s) : g ∈ Bij(Γ)} later.

Since π−1(s) = (sπ(i))i∈N for all s ∈ A, s 7→ π(s) and s 7→ π−1(s) are dual to each other. Hence the dual
results hold for π−1.
Lemma 3.2: s 7→ π−1(s) is a right action of SN on A.

Given π ∈ SN we denote the map s 7→ uπ(i)
(
π(s)

)
as uπ(i) ◦ π. Note that uπ(i) ◦ π is the utility function

of player π(i) when the strategy profiles are acted upon by the player permutation π.
Corollary 3.3: For each π, τ ∈ SN , u(τ◦π)(i) ◦ (τ ◦ π) = (uτ(π(i)) ◦ τ) ◦ π.

Proof. For each i ∈ N , s ∈ A,
(
u(τ◦π)(i) ◦ (τ ◦ π)

)
(s) = u(τ◦π)(i)

(
(τ ◦ π)(s)

)
= uτ(π(i))

(
τ
(
π(s)

))
=(

(uτ(π(i)) ◦ τ) ◦ π
)

(s).

The above may all be done exactly the same but with mixed strategy profiles, however the bulk majority
of cases where we use permutations acting on strategy profiles it will be for pure strategy profiles. Oppositely,
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the following may all be done exactly the same but with pure strategy profiles, however the purposes that
led to bothering with such notation in the first place involves mixed not pure strategy profiles.

Given π ∈ SN and σ ∈ ∇(A), we denote:

(i) σi as π(σi); and

(ii) (σπ−1(1), . . . , σπ−1(π(i)−1), σπ−1(π(i)+1), . . . , σπ−1(n)) as π(σ−i).

This gives us π(σi) = π(σ)π(i) ∈ ∆(Aπ(i)) and π(σ−i) = π(σ)−π(i) ∈ ∇(A)−π(i), however π(σi) does not need
a σ−i ∈ ∇(A)−i unlike π(σ)π(i), similarly π(σ−i) does not need a σi ∈ ∆(Ai) unlike π(σ)−π(i), which will
make the proof of Proposition 3.19 much easier to understand.
Proposition 3.4: For each i ∈ N , π ∈ SN and σ ∈ ∇(A), π(σi, σ−i) =

(
π(σi), π(σ−i)

)
.

Proof. Note that for each (σi, σ−i) ∈ ∆(Ai)×∇(A)−i, (σi, σ−i) = σ = (σj , σ−j) ∈ ∆(Aj)×∇(A)−j .
Now, π(σi, σ−i) = π(σ) =

(
π(σ)π(i), π(σ)−π(i)

)
=
(
π(σi), π(σ−i)

)
.

Note that when Ai = Aj for all i, j ∈ N , the following groupoids in Propositions 3.5 and 3.6 are all
groups (or are they? the first yes but what about the second with regards to order/positions of the tuples?).
(should they be rephrased, perhaps even with different notation?? what to denote the Ai’s as though?
Maybe A0? or A′ or A or A or do strategy profiles as A but would confuse people, as would using A = An)
Proposition 3.5: {σi 7→ π(σi) : i ∈ N, π ∈ SN} is a subgroupoid of {Bij(∆(Ai),∆(Aj)) : i, j ∈ N}.

Proof. Let Y = {σi 7→ π(σi) : i ∈ N, π ∈ SN}.

(i) For each i ∈ N , idN (σi) = σi for all σi ∈ ∆(Ai). Hence id∆(Ai) = σi 7→ idN (σi) ∈ Y ;

(ii) For each i ∈ N and π ∈ SN , we trivially have σi 7→ π(σi) ∈ Bij(∆(Ai),∆(Aπ(i)));

(iii) For each i ∈ N and π, τ ∈ SN , τ(π(σi)) = τ(σi) = σi = (τ ◦ π)(σi). Hence (σπ(i) 7→ τ(σπ(i))) ◦ (σi 7→
π(σi)) = σi 7→ (τ ◦ π)(σi) ∈ Y ; and

(iv) Finally, for each i ∈ N and π ∈ SN , since π ◦ π−1 = idN = π−1 ◦ π, we have (σi 7→ π(σi))−1 = σπ(i) 7→
π−1(σπ(i)) ∈ Y .

Proposition 3.6: {σ−i 7→ π(σ−i) : i ∈ N, π ∈ SN} is a subgroupoid of
{

Bij(∇(A)−i,∇(A)−j) : i, j ∈ N
}

.

Proof. Let Y = {σ−i 7→ π(σ−i) : i ∈ N, π ∈ SN}.

(i) For each i ∈ N , it follows trivially from id−1
N = idN that for each σ−i ∈ ∇(A)−i:

idN (σ−i) = (σid−1
N (1), . . . , σid−1

N (idN (i)−1), σid−1
N (idN (i)+1), . . . , σid−1

N (n))

= (σ1, . . . , σidN (i)−1, σidN (i)+1, . . . , σn)
= (σ1, . . . , σi−1, σi+1, . . . , σn)
= σ−i.

Hence id∇(A)−i = σ−i 7→ idN (σ−i) ∈ Y ;

(ii) Let i ∈ N , π ∈ SN and σ−i, σ
′
−i ∈ ∇(A)−i, then:

π(σ−i) = π(σ′−i)
⇒ σπ−1(j) = σ′π−1(j) for all j ∈ {1, . . . , π(i)− 1, π(i) + 1, . . . , n}
⇒ σj = σ′j for all j ∈ {1, . . . , i− 1, i+ 1, . . . , n} .

Therefore σ−i 7→ π(σ−i) is injective. Now let i ∈ N , σ−π(i) = (σ1, . . . , σπ(i)−1, σπ(i)+1, . . . , σn) ∈
∇(A)−π(i). Note (σπ(1), . . . , σπ(i)−1, σπ(i)+1, . . . , σπ(n)) ∈ ∇(A)−i and:

π(σπ(1), . . . , σπ(i)−1, σπ(i)+1, . . . , σπ(n)) = (σπ−1(π(1)), . . . , σπ−1(π(π(i)−1)), σπ−1(π(π(i)+1)), . . . , σπ−1(π(n)))
= (σ1, . . . , σπ(i)−1, σπ(i)+1, . . . , σn)
= σ−π(i).

It follows that σ−i 7→ π(σ−i) is surjective, hence σ−i 7→ π(σ−i) ∈ Bij(∇(A)−i,∇(A)−π(i));
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(iii) For each i ∈ N and π, τ ∈ SN :

τ(π(σ−i)) = τ(σπ−1(1), . . . , σπ−1(π(i)−1), σπ−1(π(i)+1), . . . , σπ−1(n))
= (σπ−1(τ−1(1)), . . . , σπ−1(τ−1(τ(π(i))−1)), σπ−1(τ−1(τ(π(i))+1)), . . . , σπ−1(τ−1(n)))
= (σ(τ◦π)−1(1), . . . , σ(τ◦π)−1((τ◦π)(i))−1), σ(τ◦π)−1((τ◦π)(i))+1), . . . , σ(τ◦π)−1(n)))
= (τ ◦ π)(σ−i).

Hence (σ−π(i) 7→ τ(σ−π(i))) ◦ (σ−i 7→ π(σ−i)) = σ−i 7→ (τ ◦ π)(σ−i) ∈ Y ; and

(iv) Finally, for each i ∈ N and π ∈ SN , since π ◦ π−1 = idN = π−1 ◦ π, we have (σ−i 7→ π(σ−i))−1 =
σ−π(i) 7→ π−1(σ−π(i)) ∈ Y .

3.2 Game Invariants

Game invariants give us a notion of players being indifferent between the current positions and an alternative
arrangement of positions.
Definition 3.7: π ∈ SN is an invariant of Γ if for each i ∈ N , ui = uπ(i) ◦ π.
Lemma 3.8: The invariants of a game form a group.

Proof. Since the identity permutation e ∈ SN acts as an identity on A it follows that ui = ui ◦ e for all
i ∈ N , hence e is an invariant. Suppose π ∈ SN is an invariant of Γ, and hence that for each i ∈ N ,
uπ−1(i) = ui ◦ π. Then for each i ∈ N , ui = (ui ◦ π) ◦ π−1 = uπ−1(i) ◦ π−1. Finally suppose π, τ ∈ SN are
invariants of Γ. Then for each i ∈ N , ui = uπ(i) ◦ π = (uτ(π(i)) ◦ τ) ◦ π = u(τ◦π)(i) ◦ (τ ◦ π).

3.3 Notions of Anonymity

Before surveying label-dependent notions of fairness we review various notions of anonymity, which have
previously been examined by Brandt et al. [4].

Central to anonymity is the notion that players do not distinguish between their opponents, by which
we mean each player merely cares about the strategies being played by their opponents and is indifferent
between who is playing them.
Definition 3.9: Γ is weakly anonymous if for each i ∈ N , π ∈ SN−{i}, ui = ui ◦ π.
Example 3.10: Weakly Anonymous 3-player game.

a b
a 0, 1, 2 4, 6, 7
b 4, 5, 8 9, 12, 14

(a, , )

a b
a 3, 6, 8 10, 11, 14
b 10, 12, 13 15, 16, 17

(b, , )

The reader may like to verify that ui = ui ◦ (jk) for all distinct i, j, k ∈ N . For example, u1(a, b, a) = 4 =
u1
(
(23)(a, b, a)

)
= u1(a, a, b). Since SN−{i} = {e, (jk)} for all i ∈ N , Γ is weakly anonymous.

When we say that players do not distinguish between their opponents, we mean for example that when
playing a, player 1 is indifferent between the strategy profiles (a, a, b) and (a, b, a).

Weak anonymity may be strengthened by requiring the players care merely about the strategies being
played and be indifferent between who is playing each strategy, or equivalently, by requiring each player
have the same payoff for each orbit in A/SN .
Definition 3.11: Γ is anonymous if for each i ∈ N , π ∈ SN , ui = ui ◦ π.
Example 3.12: Anonymous 3-player game.

a b
a 0, 1, 2 3, 4, 5
b 3, 4, 5 6, 7, 8

(a, , )

a b
a 3, 4, 5 6, 7, 8
b 6, 7, 8 9, 10, 11

(b, , )
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The reader may like to verify the orbits of A are given by A/SN =
{
{(a, a, a)},

{(a, a, b), (a, b, a), (b, a, a)}, {(a, b, b), (b, a, b), (b, b, a)}, {(b, b, b)}
}

and that each player has the same payoff
for each orbit in A/SN .

For example, let π = (123), then we have π(s1, s2, s3) = (sπ−1(1), sπ−1(2), sπ−1(3)) = (s3, s1, s2) giving us
π(a, a, b) = (b, a, a).

Anonymity may be strengthened also by requiring all players have the same payoff for each orbit in
A/SN .
Definition 3.13: Γ is fully anonymous if for each i, j ∈ N , π ∈ SN , ui = uj ◦ π.
Example 3.14: Fully anonymous 3-player game.

a b
a 1, 1, 1 2, 2, 2
b 2, 2, 2 3, 3, 3

(a, , )

a b
a 2, 2, 2 3, 3, 3
b 3, 3, 3 4, 4, 4

(b, , )

The orbits of A for the above game are the same as in Example 3.12, however now all players have the same
payoff for each orbit.

In a fully anonymous game each player is indifferent between which position they play. Hence fully
anonymous games are one class of games that fall under our broad requirements for fairness.

Note that the published version of [4] refers to weakly anonymous, anonymous and fully anonymous
games as weakly symmetric, weakly anonymous and strongly anonymous games respectively. The reason for
this is the author finds using the symmetric terminology in the context of anonymity rather confusing when
it is already the convention to use the term symmetric for notions of symmetry/fairness. Further, since the
anonymity notion that [4] refer to as weakly symmetric is not the weakest of the three anonymity notions,
the author has instead chosen to refer to them as simply anonymous, and so what [4] refer to as weakly
symmetric the author refers to as weakly anonymous. The author uses fully anonymous instead of strongly
anonymous to be consistent with the terminology used for notions of symmetry/fairness.

3.4 Notions of Fairness (work in progress)

Interestingly, fairness has not appeared much in the game theory literature. Here we review where the term
fair has appeared, introduce several new notions of fairness and begin examining how they relate to one
another. Note that we will revisit these notions of fairness several times through the remainder of the paper.
Definition 3.15: A 2-player zero-sum game is fair (cite von Neumann) if its value is 0.
Proposition 3.16: (von Neumann) If a 2-player zero-sum game is fully symmetric then it is fair.
Definition 3.17: We shall refer to a game Γ = (N,A, u) as:

(i) maximin fair if ui = uj for all i, j ∈ N ;

(ii) minimax fair if ui = uj for all i, j ∈ N ;

(iii) very-weakly-fair if ui = uj and ui = uj for all i, j ∈ N ;

(iv) weakly-fair if ui = ui = uj = uj for all i, j ∈ N ; and

(v) fair if ui = ui = 0 for all i ∈ N ;

(vi) standard strictly fair if the

(vii) fully strictly fair if

(viii) standard ordinally fair if there is a transitive subgroup of player permutations that preserve pref-
erences over pure strategy profiles (need to work out how to phrase this and establish that it is
precise/concrete/unambiguous);

(ix) fully ordinally fair
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(x) standard cardinally fair if there is a transitive subgroup of player permutations that preserve pref-
erences over mixed strategy profiles (need to work out how to phrase this and establish that it is
precise/concrete/unambiguous, including if the players are indifferent between the positions of their
opponents up to preserving preferences over the pure strategies when the strategy sets are matched
up).

(xi) fully cardinally fair if the players are indifferent between the positions of their opponents up to pre-
serving preferences over the mixed strategy profiles when the strategy sets are matched up (need to
work out how to phrase this and establish that it is precise/concrete/unambiguous).

Definition 3.18: (don’t need this anymore) We shall refer to a game Γ = (N,A, u) as maximin fair and
minimax fair if for each i, j ∈ N :

(i) max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

ui(σi, σ−i) = max
θj∈∆(Aj)

min
θ−j∈∇(A)−j

uj(θj , θ−j); and

(ii) min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

ui(σi, σ−i) = min
θ−j∈∇(A)−i

max
θj∈∆(Aj)

uj(θj , θ−j).

Need to check whether the following holds in the label-independent case.
Proposition 3.19: If a (zero-sum) game Γ = (N,A, u) is standard symmetric then it is maximin fair and
minimax fair.

Proof. Since Γ is standard symmetric there exists a transitive subgroup of the game invariants T such that
for each π ∈ T , ui = ui ◦π for all i ∈ N . For each i, j ∈ N , since T is transitive there exists π ∈ T such that
π(i) = j. Using ui = uπ(i) ◦ π = uj ◦ π, rearranging and then changing variables we have:

(i) max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

ui(σi, σ−i) = max
σi∈∆(Ai)

min
σ−i∈∆(A)−i

ui(σ)

= max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

(uπ(i) ◦ π)(σ)

= max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

uj (π(σ))

= max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

uj (π(σ)j , π(σ)−j)

= max
σi∈∆(Ai)

min
σ−i∈∇(A)−i

uj (π(σi), π(σ−i))

= max
θj∈∆(Aj)

min
θ−j∈∇(A)−j

uj(θj , θ−j); and

(ii) min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

ui(σi, σ−i) = min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

ui(σ)

= min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

(uπ(i) ◦ π)(σ)

= min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

uj (π(σ))

= min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

uj (π(σ)j , π(σ)−j)

= min
σ−i∈∇(A)−i

max
σi∈∆(Ai)

uj (π(σi), π(σ−i))

= min
θ−j∈∇(A)−j

max
θj∈∆(Aj)

uj(θj , θ−j).

It was established by von Neumann and Morgenstern [34, Pages 165-166] that every 2-player standard
symmetric zero-sum game is fair.

Need to determine whether a zero-sum standard symmetric game Γ = (N,A, u) is necessarily fair.

3.5 Notions of Symmetry

Our broad requirements for fairness that players be indifferent between which position they play may be
made more precise by requiring the invariants of a game be a transitive subgroup of SN .
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Definition 3.20: Γ is standard symmetric [28] if there exists a transitive subgroup H of the player permu-
tations such that for each i ∈ N and π ∈ H, ui = uπ(i) ◦ π.

In a standard symmetric game, while being indifferent between which position they play, each player may
care about the arrangement of their opponents, or alternatively may distinguish between their opponents.
Example 3.21: Standard symmetric 3-player game.

a b
a 1, 1, 1 3, 7, 4
b 7, 4, 3 6, 5, 8

(a, , )

a b
a 4, 3, 7 8, 6, 5
b 5, 8, 6 2, 2, 2

(b, , )

The reader may like to verify that Γ is invariant under (123) and not invariant under (12). Since
〈(123)〉 = {e, (123), (132)} is a transitive subgroup of S3, Γ is standard symmetric. Furthermore since (12)
is not an invariant the players are not indifferent between all possible position arrangements.

A useful analogy for considering the fairness of Γ is a game with three players sitting in a circle such
that each player is indifferent between circular rotations of positions, and not indifferent to their opponents
swapping positions. A similar notion of fairness/symmetry is often used by the author when coding map
generators for artificial intelligence programming contests where users write bots to play games against each
other. The maps are two dimensional grids with the edges wrapped, ie. on the surface of a torus, and
constructed in such a way that everyone is indifferent between some reorderings of the players.

We obtain a stronger level of fairness by requiring the players be indifferent between all possible position
rearrangements, that is by requiring all player permutations be invariants.
Definition 3.22: Γ is fully symmetric if it is invariant under SN .

The reader may like to verify that Example 2.1 is invariant under the permutations (12) and (123). For
example, let π = (123), then π(s1, s2, s3) = (s3, s1, s2) giving us u1(b, a, a) = u2(a, b, a) = u3(a, a, b) = 3.
Since invariants are closed under composition and 〈(12), (123)〉 = S3, Example 2.1 is fully symmetric.

Next we establish that Definition 3.22 can be characterised by various conditions.
Theorem 3.23: The following conditions are equivalent:

(i) Γ is fully symmetric;

(ii) Γ is standard symmetric and weakly anonymous;

(iii) For each i ∈ N and π ∈ SN , uπ(i) = ui ◦ π−1;

(iv) For each i ∈ N and τ ∈ TN , ui = uτ(i) ◦ τ ; and

(v) For each i ∈ N and τ ∈ TN , ui = uτ(i) ◦ τ−1.

Proof. Condition (ii) follows trivially from Condition (i). Now suppose Condition (ii) is satisfied and let H
be a transitive subgroup of player permutations under which Γ is invariant. Let π ∈ SN , i ∈ N and τ ∈ H
such that τ(i) = π(i). Since (τ−1 ◦ π) ∈ SN−{i} it follows from weak anonymity that ui = ui ◦ (τ−1 ◦ π). It
also follows from standard symmetry that ui = uτ(i) ◦ τ , putting these two bits of information together we
have ui = ui ◦ (τ−1 ◦ π) = (uτ(i) ◦ τ) ◦ (τ−1 ◦ π) = uτ(i) ◦ (τ ◦ τ−1) ◦ π = uτ(i) ◦ π = uπ(i) ◦ π.

Suppose Condition (i) is satisfied, then for each i ∈ N and π ∈ SN , uπ(i) = uπ(i) ◦ (π ◦ π−1) =
(uπ(i) ◦π) ◦π−1 = ui ◦π−1. The converse works the same in reverse giving equivalence of Conditions (i) and
(iii).

Condition (i) implies Condition (iv) since TN ⊆ SN , and Condition (iv) implies Condition (i) directly
from Corollary 3.3 and that 〈TN 〉 = SN . Conditions (iv) and (v) are equivalent since each transposition is
its own inverse.

Condition (iii) in Theorem 3.23 was used by von Neumann and Morgenstern [34], which was ideal for
their chosen notation of permutations acting on the right of players and strategy profiles. Of course any
generating set of SN may replace TN in Condition (iv) of Theorem 3.23.

It is worth noting that it is easy to mistakenly use the following inequivalent condition: for each i ∈ N
and π ∈ SN , ui = uπ(i) ◦ π−1 [6, Definition 7]. However this does not permute the players and strategy
profiles correctly as the right hand side does not have player π(i) playing the strategy that player i is playing,
which we illustrate using Example 2.1.
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Let π = (123) ∈ S3, the incorrect condition given in [6, Definition 7] requires that for each i ∈ N and
(s1, s2, s3) ∈ A, we have ui(s1, s2, s3) = uπ(i)(sπ(1), sπ(2), sπ(3)) = uπ(i)(s2, s3, s1). By considering (b, a, a) ∈
A, we see that 3 = u1(b, a, a) 6= u2(a, a, b) = 2. It should be fairly obvious that if we are mapping player 1
to player 2 and player 1 is playing b then we want the mapped strategy profile to have player 2 playing b.

Since TN ⊆ SN , it follows from Condition (v) in Theorem 3.23 that the incorrect condition in [6,
Definition 7] is somewhat surprisingly a more restrictive condition than the conditions in Theorem 3.23.
When n = 2, since each transposition is its own inverse, the incorrect condition in [6, Definition 7] is
equivalent to the conditions in Theorem 3.23. We now establish that for n ≥ 3 the incorrect condition
in [6, Definition 7] is equivalent to the condition for a game being fully anonymous.
Lemma 3.24: [4] The following conditions are equivalent:

(i) Γ is fully anonymous; and

(ii) Γ is fully symmetric and ui = uj for all i, j ∈ N .

Lemma 3.25: Let π, τ ∈ SN . If ui = uπ(i) ◦ π−1 = uτ(i) ◦ τ−1 for all i ∈ N then ui = u(τ◦π)(i) ◦ (π ◦ τ)−1

for all i ∈ N .

Proof. For each i ∈ N , ui = uπ(i) ◦ π−1 = (uτ(π(i)) ◦ τ−1) ◦ π−1 = u(τ◦π)(i) ◦ (π ◦ τ)−1.

Theorem 3.26: If n ≥ 3 then the following conditions are equivalent:

(i) Γ is fully symmetric and ui = uj for all i, j ∈ N ; and

(ii) For each i ∈ N and π ∈ SN , ui = uπ(i) ◦ π−1.

Proof. Suppose Condition (i) holds, then for each i ∈ N and π ∈ SN , ui = uπ−1(i) ◦ π−1 = uπ(i) ◦ π−1.
Conversely suppose Condition (ii) holds, and hence that Γ is fully symmetric. Let i, j, k ∈ N be distinct.
Since (ik) ◦ (ijk) ◦ (jk) = (ijk) and

(
(jk) ◦ (ijk) ◦ (ik)

)−1 = (ik) ◦ (ikj) ◦ (jk) = e, it follows from Lemma
3.25 that ui = uj .

We conclude this subsection by providing the reader with an accurate historical account of the mistake
from [6, Definition 7] being identified. The mistake was first pointed out by the author with an edit on the
4th of May 2011 to the Wikipedia page for symmetric games, which the author then revised on the 8th of
May 2011 due to not having a published reference for the author’s claim that the definition is incorrect.
Both of these edits are visible on the Wikipedia revision history for the symmetric games page [35]. The
mistake was also pointed out in the author’s 2011 honours thesis [13, Subsection 5.8].

Upon contacting the authors from [6] in 2018, the author received a response from Maskin suggesting
that they made a slight mistake, unintentionally making the definition of symmetry given stronger than
intended. Maskin suggested the mistake did not affect their own results, but has had the unfortunate effect
of possibly leading other researchers astray. Prior to 2011 [6] had 949 citations, and as at December 2018 it
has 1,374 citations, so the author feels it is a good idea for the mistake to be noted to hopefully avoid any
researchers being led astray in the future.

The mistake was also pointed out independently by Vester in his 2012 Masters thesis [33, Appendix B],
who also proved the statement in Theorem 3.26. Theorem 3.26 does not appear in the author’s honours
thesis, a proof was first released by the author publicly with the first revision of this paper uploaded to the
arXiv November 2013, see [14, Version 1]. Hence credit goes to Vester for first releasing a proof publicly,
see [33, Theorem 32].

Further, Tohmé and Viglizzo also proved the statement in Theorem 3.26 which they released in 2017,
see [31, Lemma 2.10], however do not appear to have realised that the conditions in [6, Defintion 7] were
unintentionally stronger than intended.

4 Morphisms Between Games

There are two important reasons why our simplifying assumption that players have the same strategy labels
leaves our analysis incomplete. Our first reason is that relabelling the strategies for a standard symmetric
game leads to a strategically equivalent game that may no longer be considered symmetric inside our label-
dependent framework.
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Ideally we want to be able to determine when two games merely differ by player and strategy labels
without having to go through and check all possible rearrangements of the labels.

Our second reason is that there are weaker notions of fairness that cannot be captured within our
label-dependent framework. As a motivating example consider Matching Pennies.
Example 4.1: Matching Pennies

H T
H 1,−1 −1, 1
T −1, 1 1,−1

It is clear just by looking at the payoff matrix that Matching Pennies is fair, yet inside our label dependent
framework the only invariant is the identity permutation, a problem that persists if we swap the strategy
labels for either or both of the players.

4.1 Game Bijections

Definition 4.2: A game bijection from Γ1 = (N,A, u) to Γ2 = (M,B, v) consists of a bijection π : N →M
and for each player i ∈ N , a bijection τi : Ai → Bπ(i), which we denote as

(
π; (τi)i∈N

)
.

We denote the set of game bijections from Γ1 to Γ2 as Bij(Γ1,Γ2), or simply SΓ for the bijections from a
game Γ to itself. Let g =

(
π; (τi)i∈N

)
∈ Bij(Γ1,Γ2), i ∈ N , si ∈ Ai and s ∈ A, using similar notation to our

label-dependent framework we denote π(i) as g(i), τi(si) as g(si),
(
τπ−1(j)(sπ−1(j))

)
j∈M ∈ B as g(s) giving(

g(s)
)
g(i) = τi(si) = g(si), and the map s 7→ ug(i)

(
g(s)

)
as ug(i) ◦ g.

Example 4.3: Consider the following 2-player games.

c d
a 1, 2 3, 4
b 5, 6 7, 8

Γ1

h i
e 4, 3 8, 7
f 2, 1 6, 5

Γ2

Given (a, c) ∈ A and g =
(
(12);

(
a b
h i

)
,
(
c d
f e

))
∈ Bij(Γ1,Γ2), g(a, c) = (f, h).

Let Γ3 = (L,C,w) also be a game. For g =
(
π; (τi)i∈N

)
∈ Bij(Γ1,Γ2) and h =

(
η; (φj)j∈M

)
∈ Bij(Γ2,Γ3),

their composite, denoted h ◦ g, is
(
η ◦ π; (φπ(i) ◦ τi)i∈N

)
∈ Bij(Γ1,Γ3), and the inverse of g, denoted g−1, is(

π−1; (τ−1
π−1(j))j∈M

)
∈ Bij(Γ2,Γ1).

Example 4.4: Consider Example 3.21 except with strategy labels A2 = {c, d} and A3 = {e, f} for
players 2 and 3 respectively. We compose and invert bijections g =

(
(123);

(
a b
d c

)
,
(
c d
e f

)
,
(
e f
b a

))
, h =(

(12);
(
a b
c d

)
,
(
c d
a b

)
,
( e f
f e

))
∈ SΓ as follows:

h ◦ g =
(
(12);

(
a b
c d

)
,
(
c d
a b

)
,
( e f
f e

))
◦
(
(123);

(
a b
d c

)
,
(
c d
e f

)
,
(
e f
b a

))
=
(
(12) ◦ (123);

(
c d
a b

)
◦
(
a b
d c

)
,
( e f
f e

)
◦
(
c d
e f

)
,
(
a b
c d

)
◦
(
e f
b a

))
=
(
(23);

(
a b
b a

)
,
(
c d
f e

)
,
(
e f
d c

))
; and

g−1 =
(
(123);

(
a b
d c

)
,
(
c d
e f

)
,
(
e f
b a

))−1

=
(
(123)−1;

(
e f
b a

)−1
,
(
a b
d c

)−1
,
(
c d
e f

)−1)
=
(
(132);

(
a b
f e

)
,
(
c d
b a

)
,
(
e f
c d

))
.

Lemma 4.5: (h ◦ g)(s) = h(g(s)) for all s ∈ A.

Proof.

(h ◦ g)(s) =
(
η ◦ π; (φπ(i) ◦ τi)i∈N

)
(s)

=
(
φη−1(k) ◦ τ(η◦π)−1(k)(s(η◦π)−1(k))

)
k∈L

=
(
φη−1(k)

(
τπ−1(η−1(k))(sπ−1(η−1(k)))

))
k∈L

=
(
φη−1(k)

(
g(s)η−1(k)

))
k∈L
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=
(
h
(
g(s)

)
k

)
k∈L

= h(g(s)).

Corollary 4.6: u(h◦g)(i) ◦ (h ◦ g) = (uh(g(i)) ◦ h) ◦ g for all i ∈ N .

Proof. This follows identically to the proof of Corollary 3.3.

Theorem 4.7: Game bijections form a groupoid.

Proof. Let Γ3 = (P,C), Γ4 = (Q,D), f =
(
π; (τi)i∈N

)
∈ Bij(Γ1,Γ2), g =

(
η; (φj)j∈M

)
∈ Bij(Γ2,Γ3),

h =
(
ξ; (λk)k∈P

)
∈ Bij(Γ3,Γ4). Then:

f ◦ idΓ1 =
(
π ◦ idN ; (τi ◦ idAi)i∈N

)
= f =

(
idM ◦ π; (idBπ(i) ◦ τi)i∈N

)
= idΓ2 ◦ f ;

f ◦ f−1 =
(
π ◦ π−1; (τπ−1(j) ◦ τ−1

π−1(j))j∈M
)

= idΓ2 ;

f−1 ◦ f =
(
π−1 ◦ π; (τ−1

π−1(π(i)) ◦ τi)i∈N
)

= idΓ1 ; and

h ◦ (g ◦ f) =
(
ξ; (λk)k∈P

)
◦
(
η ◦ π; (φπ(i) ◦ τi)i∈N

)
=
(
ξ ◦ η ◦ π; (λ(η◦π)(i) ◦ φπ(i) ◦ τi)i∈N

)
=
(
ξ ◦ η; (λη(j) ◦ φj)j∈M

)
◦
(
π; (τi)i∈N

)
= (h ◦ g) ◦ f.

4.2 Game Isomorphisms

Game isomorphisms are game bijections that preserve strategic structure, they are useful for establishing
strategic equivalence between games, or as we will be using them, for considering label-independent notions
of symmetry.

We will only require the strictest notion of game isomorphism to explore label-independent notions
of symmetry, treating two games as isomorphic when they differ only by the player and strategy labels.
However one can define ordinal and cardinal game isomorphisms by requiring preservation of preferences
over pure and mixed strategy profiles respectively, then characterise each by the existence of increasing
monotonic and affine transformations respectively, see [13, Propositions 4.3.2 and 4.3.5]. A discussion on
the computational complexity of deciding whether two games satisfy various notions of equivalence can be
found in Gabarró et al. [9].
Definition 4.8: A bijection g ∈ Bij(Γ1,Γ2) is a game isomorphism if ui = vg(i) ◦ g for all i ∈ N .

We denote by Isom(Γ1,Γ2) the set of isomorphisms from Γ1 to Γ2. The reader may like to verify that
the bijection in Example 4.3 is in fact an isomorphism. For example, u1(a, d) = vg(1)

(
g(a, d)

)
= v2(e, h).

Theorem 4.9: Game isomorphisms form a groupoid.

Proof. For each g ∈ Isom(Γ1,Γ2) and j ∈M , vj = (vj◦g)◦g−1 = ug−1(j)◦g−1, giving us g−1 ∈ Isom(Γ2,Γ1).
Let Γ3 = (P,C,w), then for each g ∈ Isom(Γ1,Γ2), h ∈ Isom(Γ2,Γ3) and i ∈ N , ui = vg(i) ◦ g = (wh(g(i)) ◦
h) ◦ g = w(h◦g)(i) ◦ (h ◦ g), giving us (h ◦ g) ∈ Isom(Γ1,Γ3).

The remaining conditions follow from Theorem 4.7.

Corollary 4.10: If Γ1 ∼= Γ2 ∼= Γ3 then Isom(Γ1,Γ2) ∼= Isom(Γ2,Γ3).
Game isomorphisms induce an equivalence relation where games in the same equivalence class have the

same strategic structure. There is a finite number of ordinal equivalence classes for games with both a fixed
number of players and fixed number of strategies for each of the players. Goforth and Robinson [11] counted
144 ordinal equivalence classes for the 2-player 2-strategy games.
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4.3 Bijections Acting on Strategy Profiles

The bijections SΓ from a game to itself form a group that acts on the players and strategy profiles. In fact
for an m-strategy game SΓ is isomorphic to the wreath product SN oSM where M = {1, . . . ,m}, which may
be seen by setting Ai = M for all i ∈ N .

Given a game bijection g =
(
π; (τi)i∈N

)
∈ SΓ, we refer to π as the player permutation used by g and say

that two game bijections g, h ∈ SΓ have the same player permutation if the player permutations used by g
and h are identical.

Let G be a subgroup of SΓ. We denote the subgroup of player permutations used by game bijections in
G as −→G . Furthermore, we say that G is player transitive if G acts transitively on N , player n-transitive if
G acts n-transitively on N , and only-transitive if G acts transitively and not n-transitively on N .
Lemma 4.11: Two bijections g, h ∈ G have the same player permutation if and only if they are in the same
coset of G/GN .

Proof. Suppose g, h have the same player permutation, then h = g ◦ (g−1 ◦ h) ∈ (g ◦GN ). The converse is
obvious.

Hence the factor group G/GN merely tells us what player permutations are used by G.
Corollary 4.12: G/GN ∼=

−→
G .

The isomorphisms from a game to itself form a subgroup of the game bijections called the automorphism
group of Γ, which we denote as Aut(Γ). Game automorphisms capture the notion of players being indifferent
between the current positions and an alternative arrangement of positions. Note our definition is equivalent
to the definition used by Nash [24].

For the sake of brevity, we refer to a subgroup of Aut(Γ) as a subgroup of Γ, denote the stabiliser
subgroup of Aut(Γ) on N as ΓN , and denote the player permutations used by Aut(Γ) as −→Γ .

4.4 Strategy Triviality and Matchings

Now that players need not have the same strategy labels, we seek a way to determine which subgroups of SΓ
act on strategy profiles in an equivalent way to permutations for some relabelling of the strategies. Stein [28]
introduced strategy triviality for this purpose.
Definition 4.13: A subgroup G of SΓ is strategy trivial [28] if for each i ∈ N , g(si) = si for all g ∈ Gi and
si ∈ Ai.
Lemma 4.14: [28] If G is strategy trivial then for each g, h ∈ G such that g(i) = h(i), g(si) = h(si) for
all si ∈ Ai.

Proof. Since (g−1 ◦ h) ∈ Gi, by strategy triviality, g(si) = g
(
(g−1 ◦ h)(si)

)
= (g ◦ g−1)

(
h(si)

)
= h(si).

Corollary 4.15: If G is strategy trivial then GN = {idΓ}.
Hence strategy trivial subgroups have at most one bijection for each player permutation. Example 5.14

establishes that the converse of Corollary 4.15 is false.
Corollary 4.16: If G ≤ SΓ is strategy trivial then for each i ∈ N and τ ∈

−→
G , there exists giτ(i) ∈

Bij(Ai, Aτ(i)) such that G = {(π; (giπ(i))i∈N ) : π ∈ −→G}.
It follows that all paths from one player to another map the strategies in a canonical manner. Hence if

G is also player transitive then the strategy sets are matched such that they can be treated as the same set.
We now introduce matchings to formalise what is meant by the strategy sets being matched.
Definition 4.17: A matching of A1, . . . , An is a relation M ⊆ ×i∈NAi which is i-total and i-unique for all
i ∈ N .
Example 4.18: Let A1 = {a, b}, A2 = {c, d} and A3 = {e, f}. One matching of A1 × A2 × A3 is M =
{(a, d, f), (b, c, e)}.

a c e

b d f
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From a game theoretic point of view, a matching is a subset M of the strategy profiles where for each
i ∈ N and ai ∈ Ai there is exactly one s ∈M such that si = ai, and hence |M | = m.

For each i, j ∈ N , a matching M induces a bijection Mij ∈ Bij(Ai, Aj) where, given ai ∈ Ai, Mij(ai) is
the unique aj ∈ Aj such that there exists s ∈M with si = ai and sj = aj . For example given the matching
in Example 4.18, M31 =

(
e f
b a

)
.

Lemma 4.19: {Mij : i, j ∈ N} is a groupoid.

Proof. It follows by definition that for each i, j, k ∈ N , Mii = idAi , M−1
ij = Mji and Mjk ◦Mij = Mik. Now

for each i, j, k, l ∈ N , Mij ◦Mii = Mij = Mjj ◦Mij , Mkl ◦ (Mjk ◦Mij) = Mkl ◦Mik = Mil = Mjl ◦Mij =
(Mkl ◦Mjk) ◦Mij , Mij ◦M−1

ij = Mij ◦Mji = Mjj and M−1
ij ◦Mij = Mji ◦Mij = Mii.

Furthermore, for each π ∈ SN , a matching M induces a game bijection
(
π; (Miπ(i))i∈N

)
∈ SΓ, which we

denote as Mπ. For example given the matching in Example 4.18, M(13) =
(
(13);

(
a b
f e

)
,
(
c d
c d

)
,
(
e f
b a

))
.

For each H ⊆ SN and matching M we denote the set {Mπ : π ∈ H} of bijections induced by H as MH .
For example given a subgroup G of SΓ we have M−→

G
= {Mπ : π ∈ −→G}.

Lemma 4.20: M : SN → SΓ is a homomorphism.

Proof. Let π, φ ∈ SN , then Mφ◦Mπ =
(
φ; (Miφ(i))i∈N

)
◦
(
π; (Miπ(i))i∈N

)
=
(
φ◦π; (Mπ(i)(φ◦π)(i)◦Miπ(i))i∈N

)
=
(
φ ◦ π; (Mi(φ◦π)(i))i∈N

)
= M(φ◦π).

Corollary 4.21: Mπ−1 = M−1
π for all π ∈ SN .

Lemma 4.22: For each π ∈ SN , Mπ(s) = s for all s ∈M .

Proof. For each i ∈ N ,
(
Mπ(s)

)
i

= Mπ−1(i)i(sπ−1(i)) = si.

If we relabel the strategies played in each s ∈M to be the same, giving players the same strategy labels,
then each permutation π ∈ SN acts on our relabelled strategy profiles equivalently to how Mπ acts on our
original strategy profiles. Hence a subgroup G of SΓ acts on strategy profiles equivalently to permutations
for some relabelling of the strategies precisely when G = M−→

G
for some matching M , which we now establish

occurs precisely when G is strategy trivial.
Theorem 4.23: Let G ≤ SΓ be player transitive. There exists a matching M such that M−→

G
= G if and

only if G is strategy trivial.

Proof. Suppose there exists a matching M such that M−→
G

= G. That M−→
G
≤ SΓ follows from Lemma 4.20.

Now for each i ∈ N and g ∈ Gi, Mig(i) = Mii = idAi .
Conversely suppose G is strategy trivial. By Corollary 4.16, for each i ∈ N and τ ∈

−→
G there exists

giτ(i) ∈ Bij(Ai, Aτ(i)) such that G = {
(
π; (giπ(i))i∈N

)
: π ∈ −→G}.

Let i ∈ N and M = {(gij(ai))j∈N : ai ∈ Ai}. M is a matching since for each j ∈ N and aj ∈ Aj ,
there exists a unique strategy ai ∈ Ai for player i such that gij(ai) = aj . Furthermore M is independent
of i since for each k ∈ N ,

(
gij(ai)

)
j∈N =

(
(gkj ◦ gik)(ai)

)
j∈N . Hence Mkl = gkl for all k, l ∈ N , giving us

Mπ =
(
π; (Miπ(i))i∈N

)
=
(
π; (giπ(i))i∈N

)
∈ G for all π ∈ −→G .

Hence weakly anonymous games may be characterised as follows, similarly for anonymous and fully
anonymous games.
Corollary 4.24: The following conditions are equivalent:

(i) There exists weakly anonymous Γ′ such that Γ ∼= Γ′;

(ii) There exists player n-transitive and strategy trivial G ≤ Γ such that for each i ∈ N and g ∈ Gi,
ui = ui ◦ g; and

(iii) There exists a matching M such that for each i ∈ N and π ∈ SN−{i}, ui = ui ◦Mπ.

We denote by M(n,m) the set of matchings for an n-player m-strategy game.
Example 4.25: (i) If m = n = 2 then, letting A1 = {a, b} and A2 = {c, d},

M(2, 2) =
{
{(a, c), (b, d)}, {(a, d), (b, c)}

}
.
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(ii) If m = 3 and n = 2 then, letting A1 = {a, b, c} and A2 = {d, e, f},

M(2, 3) =
{
{(a, d), (b, e), (c, f)}, {(a, d), (b, f), (c, e)}, {(a, e), (b, d), (c, f)},
{(a, e), (b, f), (c, d)}, {(a, f), (b, d), (c, e)}, {(a, f), (b, e), (c, d)}

}
.

There are a number of ways to count the number of matchings in M(n,m). Below we present one,
though note an alternative is to establish that M(n,m) ∼= Bij(A1, A2)× . . .× Bij(An−1, An).
Lemma 4.26: For each n ≥ 2: M(n, 2) is a partition of A; and |M(n, 2)| = 2n−1.

Proof. For each s ∈ A, the profile s′ where each player swaps their strategy choice is the unique profile in
A such that {s, s′} ∈M(n, 2). Consequently |M(n, 2)| = |A|

2 = 2n−1.

Lemma 4.27: For each n ≥ 2 and m ≥ 3, |M(n,m)| = mn−1|M(n,m− 1)|.

Proof. Let i ∈ N . Each ai can be matched with each a−i ∈ A−i and |A−i| = mn−1. Furthermore, for each
(ai, a−i) there are |M(n,m− 1)| ways to match the remaining m− 1 strategies of the n players.

Theorem 4.28: For each m,n ≥ 2, |M(n,m)| = (m!)n−1.

Proof. This follows inductively from Lemmas 4.26 and 4.27.

5 Label-Independent Notions of Symmetry

5.1 Notions of Fairness (work in progress)

Definition 5.1: We shall refer to a game Γ = (N,A, u) as:

(i) strictly fair if the

(ii) n-transitively strictly fair if

(iii) ordinally fair if ”there is a transitive subgroup of bijections that preserve preferences over pure strategy
profiles” (need to work out how to phrase this);

(iv) n-transitively ordinally fair

(v) cardinally fair if ”there is a transitive subgroup of bijections that preserve preferences over mixed
strategy profiles”.

(vi) n-transitively cardinally fair if

5.2 Notions of Symmetry

Similar to our label-independent characterisations of our label-dependent notions of anonymity, Theorem
4.23 gives us the following label-independent characterisations of our label-dependent notions of fairness.
Corollary 5.2: The following conditions are equivalent:

(i) There exists standard symmetric Γ′ such that Γ ∼= Γ′;

(ii) Γ has a player transitive and strategy trivial subgroup G; and

(iii) There exists a matching M and player transitive T ≤ SN such that MT ≤ Aut(Γ).

Corollary 5.3: The following conditions are equivalent:

(i) There exists fully symmetric Γ′ such that Γ ∼= Γ′;

(ii) Γ has a player n-transitive and strategy trivial subgroup G; and

(iii) There exists a matching M such that MSN ≤ Aut(Γ).

Henceforth we will use fully and standard symmetric to refer to our label-independent characterisations.
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Corollary 5.4: If Γ is standard symmetric then there exists a matching M such that for each s ∈ M ,
ui(s) = uj(s) for all i, j ∈ N .

Proof. This follows from Lemma 4.22.

Remember that the defining features for standard and fully symmetric games inside our label-dependent
framework were that players be indifferent between which position they play and the arrangement of the
players respectively. Inside our label-independent framework, these defining features capture larger classes
of fair games.
Definition 5.5: A game is symmetric [28] if its automorphism group is player transitive and n-transitively
symmetric if its automorphism group is player n-transitive.
Example 5.6: The automorphism group of Matching Pennies in Example 4.1 is

Aut(Γ) = 〈
(
(12);

(
H T
H T

)
,
(
H T
T H

))
〉

= {
(
e;
(
H T
H T

)
,
(
H T
H T

))
,
(
e;
(
H T
T H

)
,
(
H T
T H

))
,(

(12);
(
H T
H T

)
,
(
H T
T H

))
,
(
(12);

(
H T
T H

)
,
(
H T
H T

))
}.

Since Aut(Γ) is player transitive, is not strategy trivial and contains no proper transitive subgroups, Matching
Pennies is an n-transitively non-standard symmetric game.

Peleg et al. [26] and Sudhölter et al. [30] define a game to be symmetric if Aut(Γ)/ΓN ∼= SN . It follows
immediately from Corollary 4.12 that this is equivalent to a game being n-transitively symmetric, and
furthermore that Aut(Γ)/ΓN being isomorphic to some transitive subgroup of SN is equivalent to a game
being symmetric.

We now consider games which have a subgroup G isomorphic to SN with GN = {idΓ}. Fully symmetric
games obviously satisfy this condition, Example 5.14 shows that the converse of this is false. Below we show
that all games satisfying this condition are n-transitively standard symmetric games; the author has been
unable to show whether the converse holds.
Proposition 5.7: If Γ has a subgroup G isomorphic to SN with GN = {idΓ} then it is n-transitively
standard symmetric.

Proof. n-transitivity of Γ follows from −→G = SN . Now since each n-cycle generates a regular subgroup of
SN , the subgroup of G generated by an automorphism whose player permutation is an n-cycle is transitive
and strategy trivial, hence Γ is standard symmetric.

We end our exploration of symmetry notions with games that have a transitive subgroup G isomorphic
to −→Γ with GN = {idΓ}. Standard symmetric games obviously satisfy this condition. To look at the converse
we consider the argument used in Proposition 5.7.

If all transitive subgroups of SN had regular subgroups then games with a transitive subgroup G iso-
morphic to −→Γ with GN = {idΓ} would be standard symmetric. However this is not the case, Hulpke [17]
listed the non-regular minimally transitive permutation subgroups up to degree 30. The smallest example is
〈(14) ◦ (25), (135) ◦ (246)〉 of degree 6 and order 12. For more information on how the transitive subgroups
are constructed see for example [19, Algorithm 8.1]. There is a GAP [12] library for transitive groups by
Hulpke with manual [18].

We will see in Example 5.17 that games which have a transitive subgroup G isomorphic to −→Γ with
GN = {idΓ} need not be standard symmetric.

5.3 Fairness Discussion

So far we have considered many notions of symmetry, see Subsections 3.5 and 5.2, which we have also been
referring to as notions of fairness.

When the author was explaining the similarities between symmetry and fairness in the context of games
to James East, James posed the analogy of cake cutting to the author. Among numerous relevant topics
within the area of fair division, there are several types of problems that have been studied, for example:

(i) Fair cake-cutting - dividing a set of divisible and heterogeneous goods. The problem is called fair
pie-cutting when the cake is a circle;
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(ii) Fair chore division - dividing a set of divisible and heterogeneous bads;

(iii) Fair item assignment - dividing a set of indivisible and heterogeneous goods; and

(iv) Fair resource allocation - dividing a set of divisible and homogeneous goods.

The literature for fair cake-cutting dates back to at least 1948, for example see Steinhaus [29] which
begins in the first paragraph by suggesting the custom “of dividing an object into two equal parts by letting
one partner halve it and the other choose his half” was already probably many centuries old. Hundreds
of papers on the topic have appeared since, referencing them here would drown out the references more
relevant to the bulk of this paper.

For the point the author wishes to make we need not complicate things with who is cutting/dividing,
with who is choosing, or with cakes that have different toppings. Rather than keeping the cake analogy, we
equivalently consider dividing a 2-dimensional shape in to n ∈ Z+ colours.
Definition 5.8: A division of a 2-dimensional shape in to n ∈ Z+ colours is a partition of the shape in to
n regions, each region coloured with a unique colour.

First let us define automorphisms for a shape division.
Definition 5.9: An automorphism of a shape division in to n colours is any combination of rotating and/or
reflecting the divided/coloured shape that leads to the exact same shape with the same division.

Note that:

(i) While we do not require the permuted shape to preserve colours for each region, if one region with
colour X is permuted to a region of colour Y , all regions with colour X are required to permute to
regions of colour Y ;

(ii) Associated with each automorphism of a shape division is a permutation of the colours;

(iii) The identity automorphism is to not rotate or reflect the shape, ie. leave it alone; and

(iv) We refer to the automorphism group of a shape division as non-trivial when it does not consist of just
the identity automorphism.

Definition 5.10: We shall refer to the division of a 2-dimensional shape in to n ∈ Z+ colours as:

(i) fair if each colour/region fills the same area;

(ii) symmetric if the automorphism group of the shape division is non-trivial; and

(iii) strongly symmetric if the shape division has an automorphism that is not the identity but does preserve
the colours of permuted regions, ie. the associated colour permutation is the identity.

Note that all strongly symmetric shape divisions are symmetric. Most people would agree that our
definitions for fair and (strongly) symmetric in the context of shape divisions are fairly reasonable, for
example:

(i) Our definition of symmetric covers when the colours are not really relevant, merely help to distinguish
between the different regions of the division; and

(ii) Our definition of strongly symmetric covers when the colours are important and we want automor-
phisms to preserve the colour of regions.

It is not difficult to find examples which establish that neither fair nor (strongly) symmetric implies the
other when dividing shapes in to colours, see for example Figure 1.

Note that even if the rectangles from Figure 1 are squares, we still have that neither fair nor (strongly)
symmetric implies the other. It is fairly easy to generalise the examples in Figure 1 with the same results
for dividing a rectangle, including the case of a square, in to n > 2 colours. Hence, in the context of shape
division, the terms fair and symmetric are far from being equivalent, and hence definitely should not be
considered synonymous, to one another. A philosophical discussion could be had on whether two precisely
defined terms could and/or should be considered synonymous if they are equivalent in the sense of capturing
precisely the same objects.
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Figure 1: Dividing a rectangle in to two colours/shades such that it is: (strongly) symmetric while not fair
(left); and fair while not (strongly) symmetric (right).

It could be an interesting direction of research to see where fairness and (strong) symmetry do and do
not overlap when dividing various different shapes into various numbers of colours. Nevertheless, it seems
reasonable at this point to suggest that in a general context we should not treat the terms fair and symmetric
as equivalent or synonymous to one another, as we have just seen two reasonable examples where that would
break down.

Without further examination or further discussion this may leave one doubting whether notions of
symmetry for games should be referred to as notions of fairness. However, astute readers may have noticed
that there are some fundamental differences between our notions of symmetry for shape division compared
to our notions of symmetry for games. Our symmetry notions for games have required at the very least
that players be indifferent between rearrangements of positions for some transitive subgroup of the player
or game permutations. Whereas:

(i) symmetric in the context of shape division is analogous to defining a game as symmetric if the game
has an automorphism not equal to the identity; and

(ii) strongly symmetric in the context of shape division is analogous to defining a game as strongly sym-
metric if the game has an automorphism not equal to the identity but that does use the identity player
pemutation.

Neither of these have been considered notions of symmetry for games in this paper, or really anywhere
in the literature, with the exception of [31] who define partial symmetries in games for when some players
are indifferent between various positions in a game, but not indifferent between all positions.

The notions of symmetry for games that we have considered would be closer to the following notions of
symmetry for dividing shapes.
Definition 5.11: We shall refer to the division of a 2-dimensional shape in to n ∈ Z+ colours as:

(i) transitively symmetric if every colour permutation in a transitive subgroup of all colour permutations
is associated to at least one automorphism of the shape division; and

(ii) n-transitively symmetric if every colour permutation is associated to at least one automorphism of the
shape division.

Note all n-transitively symmetric shape divisions are transitively symmetric, and all transitively sym-
metric cake divisions are:

(i) fair;

(ii) symmetric; and

(iii) not necessarily strongly symmetric;

Since both all n-transitively symmetric shape divisions and all transitively symmetric shape divisions
are fair, it is reasonable to refer to these as notions of fairness for dividing shapes.

Note the example on the right in Figure 1 is fair and neither transitively or n-transitively symmetric.
What does this mean? (obviously fairness isn’t captured by transitively or n-transitively symmetric, what
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about for games? Is fairness captured by a game being (transitively) symmetric? Maybe that should lead
on to the zero sum discussion? Which might dictate how fairness is discussed prior in the paper, and will
probably/likely dictate the next paragraph).

Now consider the notion of fairness for games that players be indifferent between which position they
play. What is meant by players being indifferent between which position they play? In the case of zero-sum
games, it is common to define fairness based on the (expected/minimax).

Recall from Section 1 that the term fair has appeared in the context of zero-sum games, noting that
zero-sum games are a subclass of strategic-form games. For example a 2-player zero-sum game is defined as
fair when the (minimax or expected) value of the game is 0, ie. when the expected payoff under perfect play
for both players is 0. This gives us another notion for zero-sum games of players being indifferent between
which position they play.

A 2-player zero-sum game can be fair without both players having the same number of strategies, so
clearly a 2-player zero-sum game being fair does not imply that it satisfies any of the notions of symmetry
defined in this paper. Nor does it really seem to make much sense to refer to a fair 2-player zero-sum game
as symmetric.
Theorem 5.12: If a two person zero-sum game Γ is symmetric then it is fair (as mentioned earlier, this
result is also in von Neumann and Morgenstern [34, Pages 165-166]).

Proof. Let π = (12). It follows from π ∈ Aut(Γ) that:
min
s2

max
s1

u1(s1, s2) = min
s2

max
s1

uπ(1)(sπ−1(1), sπ−1(2)) = min
s2

max
s1

u2(s2, s1) = min
s1

max
s2

u2(s1, s2).

(i) Does there exist fair 2-player m-strategy zero-sum games that are not symmetric?

(ii) What happens if we define a game as fair if both players have the same minimax and maximin values?

(iii) Does there exist non-zero sum games where all players have minimax=maximin=0? Should these be
considered fair?

(iv) What about when minimax = same for all players and maximin = same for all players? zero-sum and
more generally?

(v) What about when minimax = maximin = same for all players?

One of our notions of fairness for games is that players be indifferent between which position they play.
Game isomorphisms establish that players are indifferent between playing the mapped positions for each
game, in the case of game automorphisms we get players being indifferent between playing different positions
in the same game. If the automorphism group of a game is player transitive, the players are indifferent
between which position they play, consequently any notion of symmetry requiring the automorphism group
be player transitive falls inside the notion of fairness that players be indifferent between which position they
play.

Note however that the players may still care about the order/arrangement/positions of their opponents,
which is the stronger notion of fairness for games that we have considered. Recall that players are indifferent
between the order/arrangement/positions of their opponents when the automorphism group is player n-
transitive.

Discuss utility and notions of fairness for shape division. Discuss game isomorphisms/automorphisms.
Mention AI!

This leads us to questions like:

(i) Are various definitions/notions of fair and symmetric equivalent/synonymous in the context of games?;

(ii) If they are not, are there cases where fair or symmetric implies the other?

(iii) Should we be using the term fair in the context of symmetric games?

Roadmap:

(i) von Neumann’s definition of fair for zero-sum games works for all simultaneous-form games;

(ii) symmetric games are fair in the above sense (von neumann noted for the n-transitive symmetric case);
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(iii) not all fair games are symmetric, so none of our notions of symmetric are equivalent to the above sense
of fair;

(iv) would be good to check which types of symmetric games can be von neumann fair with examples
for each possible combination, and find all the parameterised ones up to isomorphism, and count the
number of strategically inequivalent games for each parameterised game, so getting the number of
games for each symmetry notion up to ismorphism as well etc.

(v) can generalise above sense of fair by requiring players have same maximin values and the same minimax
values, and in between by also requiring the maximin values = minimax values;

(vi) symmetric games are fair in the sense of both generalisations above;

(vii) same as point 3 above because these are weaker senses of fair;

(viii) same as point 4 above;

(ix) von Neumann’s sense of fair does not need to preserve the players’ preferences over the (pure/mixed)
strategy profiles, ie. does not need to preserve the strategic structure with regards to indifference
between positions, so none of our notions of symmetry are captured by the vNM (or weaker) sense of
fair (or vice versa);

(x) fair in the sense of players’ preferences over the (pure/mixed) strategy profiles is captured with ordi-
nally/cardinally symmetric games (ie. ordinal/cardinal automorphisms are a transitive subgroup of
the game bijections/permutations);

(xi) would be good to do ordinal/cardinal symmetric games in detail, and see whether we can do much in
the way of examples and establishing which combinations are possible (may/should be possible in the
cardinal case to argue based off what we learn from normal symmetric game situation);

(xii) fair in the sense of players’ preferences over the mixed strategy profiles being represented by the
exact same utility functions (so payoffs are exactly comparable) is captured by symmetric games (ie.
automorphisms are a transitive subgroup of the game bijections/permutations);

(xiii) hence our notions of symmetry do capture some notions of fairness (including n-transitively symmetric
capturing the fairness notion of being indifferent between the positions of their opponents), unlike
capturing the vNM (or weaker) notions of fairness, and unlike the first few notions of symmetry for
shape divisions capturing our notion of fairness for shape divisions.

5.4 Classifying A Game

While our distinct symmetry notions give us various descriptive definitions of strategic fairness, they do not
give us a constructive way to determine where a particular game lies. We now discuss various strategies
for classifying a game which will be crucial later on when identifying examples for each combination of
symmetry notions considered in this paper.

The strategies for classifying a game introduced in this subsection are not an attempt to outline all the
steps required for algorithms that can be implemented to classify games, though with some gaps filled in
many of the strategies could be used in such algorithms. It would be a useful future research direction to
examine the complexity of deciding whether a game satisfies each notion of symmetry along with outlining
algorithms for classifying a game, a potential application of doing so will be mentioned in Subsection 5.5.

To test whether a game Γ is fully or standard symmetric: we first try to construct a matching M of
the strategy sets where for each profile s ∈M , all players have the same payoff. If no such matching exists
Γ is neither fully nor standard symmetric. For example in Matching Pennies, since there does not exist a
strategy profile where all players receive the same payoff, we can conclude Matching Pennies is non-standard
symmetric.

If such matchings exist: to test for full symmetry we check whether such a matching induces automor-
phisms for permutations that generate SN ; and to test for standard symmetry we check whether such a
matching induces automorphisms for player permutations that generate a transitive subgroup of SN , noting
that to conclude non-standard symmetry we must check that the game is not invariant under the bijections
induced by any such matching and transitive subgroup of SN .
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The reader should note that every n-cycle generates a transitive subgroup of SN , but not all transitive
subgroups of SN contain an n-cycle. For example the Klein group {e, (12) ◦ (34), (13) ◦ (24), (14) ◦ (23)} is
a transitive subgroup of S4 that does not contain any 4-cycles.

To test for n-transitivity we check whether there exists automorphisms for permutations that generate
SN ; and to test for symmetry (ie. transitivity) we check whether there exists automorphisms for permuta-
tions that generate a transitive subgroup of SN , again noting that to conclude that a game is not symmetric
we must check that the game is not invariant under any transitive subgroup of SΓ.

If we know a game is symmetric (ie. transitive) and want to show it is only-transitive, a sufficient
condition is to find a strategy profile s ∈ A whose payoffs do not appear elsewhere under all possible
permutations. For example consider Example 3.21 and suppose it has an automorphism whose player
permutation is (23). The payoffs for the profile (a, a, b) are (3, 7, 4), so we would need a strategy profile
s ∈ A with payoffs (3, 4, 7). However no such profile exists, hence Example 3.21 is an only-transitive standard
symmetric game.

5.5 Parameterised Symmetric Games

Given a subset G of game bijections we construct the parameterised game Γ(G) of G as follows: for each
g ∈ 〈G〉, s ∈ A and i ∈ N , set ui(s) = ug(i)

(
g(s)

)
. Since automorphisms are closed under composition we

have 〈G〉 ≤ Aut(Γ), hence each orbit of (N×A)/〈G〉 has the same payoff. An algorithm for this construction
method has been implemented by the author in C++, the code is available at [15].
Example 5.13: Let G = {

(
(12);

(
a b
c d

)
,
(
c d
a b

))
}. For Γ(G) we require:

u1(a, c) = u2(a, c) = α u1(a, d) = u2(b, c) = γ

u1(b, c) = u2(a, d) = β u1(b, d) = u2(b, d) = δ

c d
a α, α γ, β
b β, γ δ, δ

Γ(G)

We call α, β, γ, δ ∈ R the parameters of Γ(G). Note that distinct parameter choices may lead to strate-
gically inequivalent games, even though both games will have the same automorphism group. All fully
symmetric 2-player 2-strategy games are isomorphic to Γ(G) for at least one choice of parameters, hence
Γ(G) is a general form for fully symmetric 2-player 2-strategy games, or equivalently standard symmetric
2-player 2-strategy games.

We can define a partial order ≤ on parameterised games as follows: Γ(G) ≤ Γ(G′) when given a set of
parameter choices for Γ(G′) there exists a set of parameter choices for Γ(G) such that Γ(G) ∼= Γ(G′). We
illustrate our order in Figures 2 and 4 using the Hasse diagrams for ≤ on parameterised symmetric 2-player
and 3-player 2-strategy games up to isomorphism, which were constructed using the code at [15].

One future direction of research would be to compute the Hasse diagrams for all (symmetric) parame-
terised games up to isomorphism for a fixed number of players and fixed number of strategies, seeing which
combinations of player and strategy counts are computationally feasible with modern day hardware and
compilers. One can then also get the poset of (symmetric) games up to isomorphism by finding the strategi-
cally inequivalent games for each parameterised game. It would be good to come up with a way to allow us
to confirm/verify the result from Goforth and Robinson [11] that there are 144 ordinal equivalence classes
for the 2-player 2-strategy games, which should be possible using game bijections, and obtain numbers for
the number of (parameterised) (symmetric) games up to isomorphism for various player and strategy counts.

In order to achieve the above research goals, a number of algorithms beyond those at [15] would need to
be examined and implemented, including:

(i) Implement algorithms to classify a game for each desired symmetry notion, see Subsection 5.4 for a
discussion on this;

(ii) Find a precise and accurate definition for isomorphisms between two parameterised games, which is
likely more complicated than for non-parameterised games due to the utilities for outcomes/profiles
no longer being ordered;
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Γ(G31)
α, α α, α

α, α α, α

Γ(G22)
α, β β, α

β, α α, β

Γ(G21)
α, α β, β

β, β α, α

Γ(G11)
α, α β, γ

γ, β δ, δ

G11 = {
(
(12);

(
a b
c d

)
,
(
c d
a b

))
}, G21 = G11 ∪ {

(
(12);

(
a b
d c

)
,
(
c d
b a

))
},

G22 = {
(
(12);

(
a b
d c

)
,
(
c d
a b

))
}, G31 = G11 ∪G22.

Figure 2: A plot of the graph of the Hasse diagram for ≤ on parameterised symmetric 2-player 2-strategy
games up to isomorphism.

(iii) Implement an algorithm to check whether there exists an isomorphism between two parameterised
games, ie. check whether two parameterised games are equivalent. This may require iterating through
every relabelling of the players and strategies;

(iv) Implement an algorithm for the partial-order we defined on parameterised games;

(v) Implement a struct for posets of strategic-form games ordered using the partial-order algorithm; and

(vi) Unless the search space can be reduced, iterate through all appropriate subsets/subgroups of the
game bijections, constructing the game for each subset/subgroup, checking that it meets the desired
properties in the case of symmetric games, checking whether each new constructed game is equivalent
to any games already found, and if it not equivalent to any games already found then insert it in to
the poset.

When the above is successfully achieved, one will also need a way to output the Hasse diagrams in a
way that humans can interpret, preferably also outputting the Hasse diagrams as TiKZ code or code for
any other LATEX package.

The author sees little point in constructing the Hasse diagram for non-parameterised games as it will
essentially be the same as the Hasse diagram for parameterised games except each parameterised game
is replaced with an equivalence class of strategically inequivalent games that essentially have the same
automorphism group.

Subsection 5.6 contains examples of games for the remaining combinations of symmetry notions that
examples have not already been given for. These examples were constructed using the code at [15] and using
the following strategies.

To construct a symmetric game or an n-transitively symmetric game we use bijections that generate a
player transitive or player n-transitive subgroup respectively.

To construct an only-transitive symmetric game it is not sufficient to use bijections that generate an
only-transitive subgroup, we must construct Γ(G) and check that it is only-transitive. This is due to 〈G〉
possibly being a proper subgroup of Aut(Γ). For example, if we take:

G = {
(
(123);

(
a b
d c

)
,
(
c d
e f

)
,
(
e f
a b

))
,
(
(123);

(
a b
c d

)
,
(
c d
f e

)
,
(
e f
a b

))
},

then N×A has one orbit under 〈G〉 (i.e. Γ(G) has one parameter/payoff) despite 〈G〉 being an only-transitive
subgroup.

To construct a standard symmetric game we use the bijections induced from a matching of the strategy
sets and player permutations which generate a transitive subgroup of SN . To construct a non-standard
symmetric game, we first choose game bijections which are not obviously from the same matching, construct
Γ(G) and check whether it is non-standard symmetric. We construct fully and non-fully symmetric games
similarly.
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5.6 Further examples

So far we have seen examples of fully symmetric, only-transitive standard symmetric and n-transitively non-
standard symmetric games. We now look at examples constructed with the code at [15] to show that our
notions of symmetry are related as shown in the Euler diagram in Figure 3. A similar approach with regards
to constructing examples has been taken by the author and East in [8] within the context of lattice path
enumeration to give the precise relationships between finiteness properties of path counts to end points,
geometrical properties of the underlying step set, algebraic properties of the monoid of end points, and
combinatorial properties of a certain bi-labelled digraph naturally associated to the underlying step set.
Knowing the precise relationship between the various notions of symmetry is useful for:

(i) The theory of (symmetric) games and more generally from a pure mathematics perspective; and

(ii) Identifying which combinations of symmetry notions may appear in areas like artificial intelligence,
biology, computer science, economics, legal systems, logic, philosophy, politics, along with social choice
and voting theory. Though a more thorough investigation of examples for each feasible combination
would be needed to identify which strategic situations arise in different contexts.

fullystandard n-transitive

symmetric

Figure 3: Euler diagram for label-independent symmetry notions.

Example 5.14: An n-transitively non-fully standard symmetric 3-player game.

e f
c α, α, α β, γ, δ
d γ, δ, β δ, γ, β

(a, , )

e f
c δ, β, γ β, δ, γ
d γ, β, δ α, α, α

(b, , )

G = {
(
(123);

(
a b
c d

)
,
(
c d
e f

)
,
(
e f
a b

))
,
(
(12);

(
a b
d c

)
,
(
c d
b a

)
,
( e f
f e

))
}

Since 〈G〉 is n-transitive, and the first generator generates a player transitive and strategy trivial group
with the matching M = {(a, c, e), (b, d, f)}, Γ(G) is n-transitively and standard symmetric. Furthermore
since the bijections induced by M from player transpositions are not automorphisms, Γ(G) is non-fully
symmetric.

Cheng et al. [5] showed that fully symmetric 2-strategy games have at least one pure strategy Nash
equilibrium. They also noted that Rock, Paper, Scissors is an example of a fully symmetric 2-player 3-
strategy game with no pure strategy Nash equilibria, and indirectly that Matching Pennies is an example of
a non-standard symmetric 2-player 2-strategy game which has no pure strategy Nash equilibria. The reader
may like to verify that Example 3.21 is a standard symmetric 2-strategy game with no pure strategy Nash
equilibria.

Note Example 5.14 is the only parameterised n-transitively non-fully standard symmetric 3-player 2-
strategy game up to isomorphism. Furthermore note there are pure strategy Nash equilibria for each choice
of parameters. The author has been unable to show whether the result from Cheng et al. [5] weakens to
n-transitively standard symmetric 2-strategy games.
Example 5.15: Two only-transitive non-standard symmetric 4-player games.
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Γ(G41)
α, α, α α, α, α

α, α, α α, α, α

α, α, α α, α, α

α, α, α α, α, α

Γ(G31)
α, α, α β, β, β

β, β, β α, α, α

β, β, β α, α, α

α, α, α β, β, β

Γ(G32)
α, α, α β, β, δ

β, δ, β δ, β, β

δ, β, β β, δ, β

β, β, δ α, α, α

Γ(G21)
α, α, α β, β, δ

β, δ, β σ, ρ, ρ

δ, β, β ρ, σ, ρ

ρ, ρ, σ ω, ω, ω

Γ(G22)
α, α, α β, γ, δ

γ, δ, β δ, γ, β

δ, β, γ β, δ, γ

γ, β, δ α, α, α

Γ(G23)
α, α, α β, γ, δ

γ, δ, β δ, β, γ

δ, β, γ γ, δ, β

β, γ, δ α, α, α

Γ(G11)
α, α, α β, γ, δ

γ, δ, β σ, ρ, τ

δ, β, γ τ, σ, ρ

ρ, τ, σ ω, ω, ω

G11 = {
(
(123);

(
a b
c d

)
,
(
c d
e f

)
,
(
e f
a b

))
},

G21 = G11 ∪ {
(
(12);

(
a b
c d

)
,
(
c d
a b

)
,
( e f
e f

))
},

G22 = G11 ∪ {
(
(12);

(
a b
d c

)
,
(
c d
b a

)
,
( e f
f e

))
},

G23 = {
(
(123);

(
a b
d c

)
,
(
c d
f e

)
,
(
e f
b a

))
},

G31 = G21 ∪ {
(
(123);

(
a b
d c

)
,
(
c d
f e

)
,
(
e f
a b

))
},

G32 = G2i ∪G2j for all distinct i, j ∈ {1, 2, 3},
G41 = G31 ∪G32.

Figure 4: A plot of the graph of the Hasse diagram for ≤ on parameterised symmetric 3-player 2-strategy
games up to isomorphism.
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g h
e α, β, γ, δ ρ, τ, σ, ω
f σ, ω, ρ, τ ω, ρ, τ, σ

(a, c, , )

g h
e δ, α, β, γ τ, σ, ω, ρ
f γ, δ, α, β β, γ, δ, α

(a, d, , )
g h

e β, γ, δ, α γ, δ, α, β
f τ, σ, ω, ρ δ, α, β, γ

(b, c, , )

g h
e ω, ρ, τ, σ σ, ω, ρ, τ
f ρ, τ, σ, ω α, β, γ, δ

(b, d, , )

G = {
(
(1234);

(
a b
d c

)
,
(
c d
e f

)
,
( e f
g h

)
,
(
g h
a b

))
}

Since there does not exist any profile where the payoffs are equal and 〈G〉 is transitive, Γ(G) is non-
standard symmetric. Now for the strategy profile (a, c, e, g) we have payoffs (α, β, γ, δ). If Γ(G) had an
automorphism using (23) then there would be a strategy profile s ∈ A with payoffs (α, γ, β, δ). Since no
such profile exists Γ(G) is only-transitive.

g h
e α, α, β, β γ, δ, δ, γ
f δ, γ, γ, δ β, β, α, α

(a, c, , )

g h
e γ, δ, δ, γ α, α, β, β
f β, β, α, α δ, γ, γ, δ

(a, d, , )
g h

e δ, γ, γ, δ β, β, α, α
f α, α, β, β γ, δ, δ, γ

(b, c, , )

g h
e β, β, α, α δ, γ, γ, δ
f γ, δ, δ, γ α, α, β, β

(b, d, , )

G′ = {
(
(12) ◦ (34);

(
a b
d c

)
,
(
c d
a b

)
,
( e f
h g

)
,
( g h
e f

))
,(

(13) ◦ (24);
(
a b
f e

)
,
(
c d
h g

)
,
(
e f
a b

)
,
(
g h
c d

))
,(

(14) ◦ (23);
(
a b
h g

)
,
(
c d
f e

)
,
(
e f
c d

)
,
(
g h
a b

))
}

That Γ(G′) is only-transitive non-standard symmetric follows by the same argument used for Γ(G).
Example 5.16: An n-transitively non-standard symmetric 4-player game.

g h
e α, β, β, β β, α, β, β
f β, β, β, α β, β, β, α

(a, c, , )

g h
e β, β, α, β β, α, β, β
f β, β, α, β α, β, β, β

(a, d, , )
g h

e α, β, β, β β, β, α, β
f β, α, β, β β, β, α, β

(b, c, , )

g h
e β, β, β, α β, β, β, α
f β, α, β, β α, β, β, β

(b, d, , )

G = {
(
(1234);

(
a b
c d

)
,
(
c d
e f

)
,
( e f
h g

)
,
(
g h
a b

))
,
(
(12);

(
a b
c d

)
,
(
c d
a b

)
,
( e f
e f

)
,
( g h
h g

))
}

Γ(G) is n-transitive since 〈G〉 is n-transitive, and non-standard symmetric since there does not exist any
profile where all players receive the same payoff.
Example 5.17: An only-transitive non-standard symmetric 6-player game that has a subgroup 〈G〉 iso-
morphic to

−−→
〈G〉 with 〈G〉N = {idΓ}.

k l
i 1, 2, 1, 2, 1, 2 3, 4, 5, 6, 7, 8
j 9, 10, 11, 12, 13, 14 15, 16, 17, 18, 19, 20

(a, c, e, g, , )

k l
i 5, 6, 7, 8, 3, 4 20, 15, 19, 17, 18, 16
j 21, 22, 23, 24, 25, 26 27, 27, 28, 28, 28, 27

(a, c, e, h, , )

31



k l
i 11, 12, 13, 14, 9, 10 29, 29, 30, 30, 30, 29
j 26, 24, 22, 23, 21, 25 4, 8, 6, 7, 5, 3

(a, c, f, g, , )

k l
i 17, 18, 19, 20, 15, 16 8, 3, 7, 5, 6, 4
j 31, 32, 32, 32, 31, 31 16, 20, 18, 19, 17, 15

(a, c, f, h, , )
k l

i 7, 8, 3, 4, 5, 6 18, 16, 20, 15, 19, 17
j 30, 29, 29, 29, 30, 30 6, 4, 8, 3, 7, 5

(a, d, e, g, , )

k l
i 19, 17, 18, 16, 20, 15 32, 31, 32, 31, 32, 31
j 13, 11, 12, 10, 14, 9 22, 26, 24, 25, 23, 21

(a, d, e, h, , )
k l

i 23, 24, 25, 26, 21, 22 12, 10, 14, 9, 13, 11
j 14, 12, 10, 11, 9, 13 2, 2, 2, 1, 1, 1

(a, d, f, g, , )

k l
i 28, 28, 28, 27, 27, 27 24, 25, 23, 21, 22, 26
j 25, 23, 24, 22, 26, 21 10, 14, 12, 13, 11, 9

(a, d, f, h, , )
k l

i 13, 14, 9, 10, 11, 12 25, 26, 21, 22, 23, 24
j 21, 25, 26, 24, 22, 23 31, 31, 31, 32, 32, 32

(b, c, e, g, , )

k l
i 30, 30, 30, 29, 29, 29 14, 9, 13, 11, 12, 10
j 9, 13, 14, 12, 10, 11 26, 21, 25, 23, 24, 22

(b, c, e, h, , )
k l

i 22, 23, 21, 25, 26, 24 10, 11, 9, 13, 14, 12
j 27, 28, 27, 28, 27, 28 16, 17, 15, 19, 20, 18

(b, c, f, g, , )

k l
i 6, 7, 5, 3, 4, 8 2, 1, 1, 1, 2, 2
j 15, 19, 20, 18, 16, 17 4, 5, 3, 7, 8, 6

(b, c, f, h, , )
k l

i 19, 20, 15, 16, 17, 18 28, 27, 27, 27, 28, 28
j 5, 3, 4, 8, 6, 7 17, 15, 16, 20, 18, 19

(b, d, e, g, , )

k l
i 7, 5, 6, 4, 8, 3 23, 21, 22, 26, 24, 25
j 1, 1, 2, 2, 2, 1 11, 9, 10, 14, 12, 13

(b, d, e, h, , )
k l

i 32, 32, 31, 31, 31, 32 24, 22, 26, 21, 25, 23
j 20, 18, 16, 17, 15, 19 8, 6, 4, 5, 3, 7

(b, d, f, g, , )

k l
i 18, 19, 17, 15, 16, 20 12, 13, 11, 9, 10, 14
j 3, 7, 8, 6, 4, 5 29, 30, 29, 30, 29, 30

(b, d, f, h, , )
G = {

(
(14) ◦ (25);

(
a b
h g

)
,
(
c d
i j

)
,
( e f
f e

)
,
(
g h
b a

)
,
( i j
c d

)
,
(
k l
l k

))
,(

(135) ◦ (246);
(
a b
e f

)
,
(
c d
g h

)
,
( e f
i j

)
,
(
g h
k l

)
,
( i j
a b

)
,
(
k l
c d

))
}

Since there does not exist any profile where the payoffs are equal and 〈G〉 is transitive, Γ is non-standard
symmetric. Now the payoffs for (a, c, e, g, i, k) are (1, 2, 1, 2, 1, 2). If there was an automorphism for (12)
then there would be s ∈ A with payoffs (2, 1, 1, 2, 1, 2). Since no such profile exists Γ is only-transitive.
It can be verified that 〈G〉 has order 12, which is equal to the order of 〈(14) ◦ (25), (135) ◦ (246)〉, hence
〈G〉 ∼= 〈(14) ◦ (25), (135) ◦ (246)〉 and 〈G〉N = {idΓ}.
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